BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 7887986)

  • 21. Purification and properties of soman-hydrolyzing enzyme from human liver.
    Wang Q; Sun M; Zhang H; Huang C
    J Biochem Mol Toxicol; 1998; 12(4):213-7. PubMed ID: 9580873
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Asymmetric fluorogenic organophosphates for the development of active organophosphate hydrolases with reversed stereoselectivity.
    Amitai G; Adani R; Yacov G; Yishay S; Teitlboim S; Tveria L; Limanovich O; Kushnir M; Meshulam H
    Toxicology; 2007 Apr; 233(1-3):187-98. PubMed ID: 17129656
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Phosphotriesterase variants with high methylphosphonatase activity and strong negative trade-off against phosphotriesters.
    Briseño-Roa L; Timperley CM; Griffiths AD; Fersht AR
    Protein Eng Des Sel; 2011 Jan; 24(1-2):151-9. PubMed ID: 21037279
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The influence of inhibitors and other factors on cholinesterases.
    Bajgar J
    Sb Ved Pr Lek Fak Karlovy Univerzity Hradci Kralove; 1991; 34(1):5-77. PubMed ID: 1759111
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rational design of organophosphorus hydrolase for altered substrate specificities.
    Di Sioudi BD; Miller CE; Lai K; Grimsley JK; Wild JR
    Chem Biol Interact; 1999 May; 119-120():211-23. PubMed ID: 10421455
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Aminoalcohol-Induced Activation of Organophosphorus Hydrolase (OPH) towards Diisopropylfluorophosphate (DFP).
    Li D; Zhang Y; Song H; Lu L; Liu D; Yuan Y
    PLoS One; 2017; 12(1):e0169937. PubMed ID: 28085964
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Detoxification of soman and o-cyclopentyl-s-diethylaminoethyl methylphosphonothioate in vivo.
    Harris L; Broomfield C; Adams N; Stitcher D
    Proc West Pharmacol Soc; 1984; 27():315-8. PubMed ID: 6494170
    [No Abstract]   [Full Text] [Related]  

  • 28. Detoxication of phosphonothioates and phosphonofluoridates in the rat.
    Bajgar J; Fusek J; Patocka J; Hrdina V
    Acta Biol Med Ger; 1978; 37(8):1261-5. PubMed ID: 749462
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Two enzymes for the detoxication of organophosphorus compounds--sources, similarities, and significance.
    Hoskin FC; Kirkish MA; Steinmann KE
    Fundam Appl Toxicol; 1984 Apr; 4(2 Pt 2):S165-72. PubMed ID: 6373467
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Generation of a mutagenized organophosphorus hydrolase for the biodegradation of the organophosphate pesticides malathion and demeton-S.
    Schofield DA; DiNovo AA
    J Appl Microbiol; 2010 Aug; 109(2):548-557. PubMed ID: 20132373
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Augmented hydrolysis of diisopropyl fluorophosphate in engineered mutants of phosphotriesterase.
    Watkins LM; Mahoney HJ; McCulloch JK; Raushel FM
    J Biol Chem; 1997 Oct; 272(41):25596-601. PubMed ID: 9325279
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular Docking, Metal Substitution and Hydrolysis Reaction of Chiral Substrates of Phosphotriesterase.
    de Castro AA; Caetano MS; Silva TC; Mancini DT; Rocha EP; da Cunha EF; Ramalho TC
    Comb Chem High Throughput Screen; 2016; 19(4):334-44. PubMed ID: 27012528
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Determination of the main hydrolysis product of O-ethyl S-2-diisopropylaminoethyl methylphosphonothiolate, ethyl methylphosphonic acid, in human serum.
    Katagi M; Nishikawa M; Tatsuno M; Tsuchihashi H
    J Chromatogr B Biomed Sci Appl; 1997 Feb; 689(2):327-33. PubMed ID: 9080318
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization of O,O-diethylphosphoryl oximes as inhibitors of cholinesterases and substrates of phosphotriesterases.
    Leader H; Vincze A; Manisterski B; Rothschild N; Dosoretz C; Ashani Y
    Biochem Pharmacol; 1999 Aug; 58(3):503-15. PubMed ID: 10424771
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Expression and subcellular localization of organophosphate hydrolase in acephate-degrading Pseudomonas sp. strain Ind01 and its use as a potential biocatalyst for elimination of organophosphate insecticides.
    Pinjari AB; Pandey JP; Kamireddy S; Siddavattam D
    Lett Appl Microbiol; 2013 Jul; 57(1):63-8. PubMed ID: 23574004
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Esterases: problems of identification and classification.
    Walker CH; Mackness MI
    Biochem Pharmacol; 1983 Nov; 32(22):3265-9. PubMed ID: 6316976
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Aging pathways for organophosphate-inhibited human butyrylcholinesterase, including novel pathways for isomalathion, resolved by mass spectrometry.
    Li H; Schopfer LM; Nachon F; Froment MT; Masson P; Lockridge O
    Toxicol Sci; 2007 Nov; 100(1):136-45. PubMed ID: 17698511
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Human paraoxonase double mutants hydrolyze V and G class organophosphorus nerve agents.
    Kirby SD; Norris JR; Richard Smith J; Bahnson BJ; Cerasoli DM
    Chem Biol Interact; 2013 Mar; 203(1):181-5. PubMed ID: 23159884
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Conformational variability of organophosphorus hydrolase upon soman and paraoxon binding.
    Gomes DE; Lins RD; Pascutti PG; Lei C; Soares TA
    J Phys Chem B; 2011 Dec; 115(51):15389-98. PubMed ID: 22098575
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reaction of nerve agents with phosphate buffer at pH 7.
    Creasy WR; Fry RA; McGarvey DJ
    J Phys Chem A; 2012 Jul; 116(27):7279-86. PubMed ID: 22667763
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.