BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 7887986)

  • 41. Characterization of organophosphorus hydrolases and the genetic manipulation of the phosphotriesterase from Pseudomonas diminuta.
    Dave KI; Miller CE; Wild JR
    Chem Biol Interact; 1993 Jun; 87(1-3):55-68. PubMed ID: 8393748
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Direct observation and elucidation of the structures of aged and nonaged phosphorylated cholinesterases by 31P NMR spectroscopy.
    Segall Y; Waysbort D; Barak D; Ariel N; Doctor BP; Grunwald J; Ashani Y
    Biochemistry; 1993 Dec; 32(49):13441-50. PubMed ID: 8257680
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effect of organophosphorus hydrolysing enzymes on obidoxime-induced reactivation of organophosphate-inhibited human acetylcholinesterase.
    Herkenhoff S; Szinicz L; Rastogi VK; Cheng TC; DeFrank JJ; Worek F
    Arch Toxicol; 2004 Jun; 78(6):338-43. PubMed ID: 14985944
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Diisopropylphosphorofluoridate and Tabun: enzymatic hydrolysis and nerve function.
    Hoskin FC
    Science; 1971 Jun; 172(3989):1243-5. PubMed ID: 5576158
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Hydrolysis of VX on concrete: rate of degradation by direct surface interrogation using an ion trap secondary ion mass spectrometer.
    Groenewold GS; Williams JM; Appelhans AD; Gresham GL; Olson JE; Jeffery MT; Rowland B
    Environ Sci Technol; 2002 Nov; 36(22):4790-4. PubMed ID: 12487301
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Aging-resistant organophosphate bioscavenger based on polyethylene glycol-conjugated F338A human acetylcholinesterase.
    Mazor O; Cohen O; Kronman C; Raveh L; Stein D; Ordentlich A; Shafferman A
    Mol Pharmacol; 2008 Sep; 74(3):755-63. PubMed ID: 18523134
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Organophosphorus acid anhydride hydrolase activity in human butyrylcholinesterase: synergy results in a somanase.
    Millard CB; Lockridge O; Broomfield CA
    Biochemistry; 1998 Jan; 37(1):237-47. PubMed ID: 9425044
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Crystal structures of acetylcholinesterase in complex with organophosphorus compounds suggest that the acyl pocket modulates the aging reaction by precluding the formation of the trigonal bipyramidal transition state.
    Hörnberg A; Tunemalm AK; Ekström F
    Biochemistry; 2007 Apr; 46(16):4815-25. PubMed ID: 17402711
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Degradation of organophosphorous nerve agents by enzyme-polymer nanocomposites: efficient biocatalytic materials for personal protection and large-scale detoxification.
    Gill I; Ballesteros A
    Biotechnol Bioeng; 2000 Nov; 70(4):400-10. PubMed ID: 11005922
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Action of organophosphate anticholinesterases on the three conformational states of nicotinic receptor.
    Chi M; Sun M
    Adv Exp Med Biol; 1995; 363():65-73. PubMed ID: 7618531
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Monitoring the hydrolysis of toxic organophosphonate nerve agents in aqueous buffer and in bicontinuous microemulsions by use of diisopropyl fluorophosphatase (DFPase) with (1)H- (31)P HSQC NMR spectroscopy.
    Gäb J; Melzer M; Kehe K; Wellert S; Hellweg T; Blum MM
    Anal Bioanal Chem; 2010 Feb; 396(3):1213-21. PubMed ID: 19943158
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The binding of substrate analogs to phosphotriesterase.
    Benning MM; Hong SB; Raushel FM; Holden HM
    J Biol Chem; 2000 Sep; 275(39):30556-60. PubMed ID: 10871616
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The effect of the human serum paraoxonase polymorphism is reversed with diazoxon, soman and sarin.
    Davies HG; Richter RJ; Keifer M; Broomfield CA; Sowalla J; Furlong CE
    Nat Genet; 1996 Nov; 14(3):334-6. PubMed ID: 8896566
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Mutant acetylcholinesterases as potential detoxification agents for organophosphate poisoning.
    Saxena A; Maxwell DM; Quinn DM; Radić Z; Taylor P; Doctor BP
    Biochem Pharmacol; 1997 Jul; 54(2):269-74. PubMed ID: 9271331
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A novel approach to assessing percutaneous VX poisoning in the conscious guinea-pig.
    Mumford H; Price ME; Wetherell JR
    J Appl Toxicol; 2008 Jul; 28(5):694-702. PubMed ID: 18059069
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Simultaneous Time-concentration Analysis of Soman and VX Adducts to Butyrylcholinesterase and Albumin by LC-MS-MS.
    Lee JY; Kim C; Lee YH
    J Anal Toxicol; 2018 Jun; 42(5):293-299. PubMed ID: 29618078
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Purification and properties of the phosphotriesterase from Pseudomonas diminuta.
    Dumas DP; Caldwell SR; Wild JR; Raushel FM
    J Biol Chem; 1989 Nov; 264(33):19659-65. PubMed ID: 2555328
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Decontamination with clay or alcoholate of pigs percutaneously poisoned with VX and soman].
    Knezević DL; Tadić V
    Vojnosanit Pregl; 1994; 51(6):488-91. PubMed ID: 8585153
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Modification of near active site residues in organophosphorus hydrolase reduces metal stoichiometry and alters substrate specificity.
    diSioudi B; Grimsley JK; Lai K; Wild JR
    Biochemistry; 1999 Mar; 38(10):2866-72. PubMed ID: 10074338
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Non-calcium dependent activity hydrolysing organophosphorus compounds in hen plasma.
    Díaz-Alejo N; Sogorb MA; Vicedo JL; Barril J; Vilanova E
    Comp Biochem Physiol Pharmacol Toxicol Endocrinol; 1994 Feb; 107(2):213-9. PubMed ID: 7749589
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.