BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 7889354)

  • 1. Residues of arsenic and lead in potato soils on Long Island.
    Sanok WJ; Ebel JG; Manzell KL; Gutenmann WH; Lisk DJ
    Chemosphere; 1995 Feb; 30(4):803-6. PubMed ID: 7889354
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Residues of lead and arsenic in crops cultured on old orchard soils.
    Kenyon DJ; Elfving DC; Pakkala IS; Bache CA; Lisk D
    Bull Environ Contam Toxicol; 1979 May; 22(1-2):221-3. PubMed ID: 37951
    [No Abstract]   [Full Text] [Related]  

  • 3. Bioaccessible arsenic in soils of former sugar cane plantations, Island of Hawaii.
    Cutler WG; Brewer RC; El-Kadi A; Hue NV; Niemeyer PG; Peard J; Ray C
    Sci Total Environ; 2013 Jan; 442():177-88. PubMed ID: 23178778
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arsenic and lead residues in carrots from foliar applications of monosodium methanearsonate (MSMA): A comparison between mineral and organic soils, or from soil residues.
    Zandstra BH; De Kryger TA
    Food Addit Contam; 2007 Jan; 24(1):34-42. PubMed ID: 17164215
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arsenic, lead, and other trace elements in soils contaminated with pesticide residues at the Hanford site (USA).
    Yokel J; Delistraty DA
    Environ Toxicol; 2003 Apr; 18(2):104-14. PubMed ID: 12635098
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metal-contaminated potato crops and potential human health risk in Bolivian mining highlands.
    Garrido AE; Strosnider WHJ; Wilson RT; Condori J; Nairn RW
    Environ Geochem Health; 2017 Jun; 39(3):681-700. PubMed ID: 28337621
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arsenic speciation driving risk based corrective action.
    Marlborough SJ; Wilson VL
    Sci Total Environ; 2015 Jul; 520():253-9. PubMed ID: 25817762
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Collateral benefits and hidden hazards of soil arsenic during abatement assessment of residential lead hazards.
    Elless MP; Ferguson BW; Bray CA; Patch S; Mielke H; Blaylock MJ
    Environ Pollut; 2008 Nov; 156(1):20-8. PubMed ID: 18328607
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heavy metal residues in plants cultivated on and in small mammals indigenous to old orchard soils.
    Elfving DC; Haschek WM; Stehn RA; Bache CA; Lisk DJ
    Arch Environ Health; 1978; 33(2):95-9. PubMed ID: 348127
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ecotoxicological study of arsenic and lead contaminated soils in former orchards at the Hanford Site, USA.
    Delistraty D; Yokel J
    Environ Toxicol; 2014 Jan; 29(1):10-20. PubMed ID: 21922631
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Arsenic in the soils of Zimapán, Mexico.
    Ongley LK; Sherman L; Armienta A; Concilio A; Salinas CF
    Environ Pollut; 2007 Feb; 145(3):793-9. PubMed ID: 16872728
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arsenic and lead (beudantite) contamination of agricultural rice soils in the Guandu Plain of northern Taiwan.
    Chiang KY; Lin KC; Lin SC; Chang TK; Wang MK
    J Hazard Mater; 2010 Sep; 181(1-3):1066-71. PubMed ID: 20566242
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analytical speciation as a tool to assess arsenic behaviour in soils polluted by mining.
    Ruiz-Chancho MJ; López-Sánchez JF; Rubio R
    Anal Bioanal Chem; 2007 Jan; 387(2):627-35. PubMed ID: 17171341
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inorganic arsenic speciation in soil and groundwater near in-service chromated copper arsenate-treated wood poles.
    Zagury GJ; Dobran S; Estrela S; Deschênes L
    Environ Toxicol Chem; 2008 Apr; 27(4):799-807. PubMed ID: 18333683
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fractions and colloidal distribution of arsenic associated with iron oxide minerals in lead-zinc mine-contaminated soils: Comparison of tailings and smelter pollution.
    Ma J; Lei M; Weng L; Li Y; Chen Y; Islam MS; Zhao J; Chen T
    Chemosphere; 2019 Jul; 227():614-623. PubMed ID: 31009868
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arsenic pollution of agricultural soils by concentrated animal feeding operations (CAFOs).
    Liu X; Zhang W; Hu Y; Hu E; Xie X; Wang L; Cheng H
    Chemosphere; 2015 Jan; 119():273-281. PubMed ID: 25036941
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combined effects of low-molecular-weight organic acids on mobilization of arsenic and lead from multi-contaminated soils.
    Onireti OO; Lin C; Qin J
    Chemosphere; 2017 Mar; 170():161-168. PubMed ID: 27988451
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioavailability and speciation of arsenic in carrots grown in contaminated soil.
    Helgesen H; Larsen EH
    Analyst; 1998 May; 123(5):791-6. PubMed ID: 9709475
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distribution of soil arsenic species, lead and arsenic bound to humic acid molar mass fractions in a contaminated apple orchard.
    Newton K; Amarasiriwardena D; Xing B
    Environ Pollut; 2006 Sep; 143(2):197-205. PubMed ID: 16480799
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The fate of arsenic in soil-plant systems.
    Moreno-Jiménez E; Esteban E; Peñalosa JM
    Rev Environ Contam Toxicol; 2012; 215():1-37. PubMed ID: 22057929
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.