These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 7889358)

  • 1. Chloride conductance produces both presynaptic inhibition and antidromic spikes in primary afferents.
    Cattaert D; el Manira A; Clarac F
    Brain Res; 1994 Dec; 666(1):109-12. PubMed ID: 7889358
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct evidence for presynaptic inhibitory mechanisms in crayfish sensory afferents.
    Cattaert D; el Manira A; Clarac F
    J Neurophysiol; 1992 Mar; 67(3):610-24. PubMed ID: 1578247
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Presynaptic inhibition and antidromic spikes in primary afferents of the crayfish: a computational and experimental analysis.
    Cattaert D; Libersat F; El Manira A A
    J Neurosci; 2001 Feb; 21(3):1007-21. PubMed ID: 11157086
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Presynaptic inhibition and antidromic discharges in crayfish primary afferents.
    Cattaert D; El Manira A; Bévengut M
    J Physiol Paris; 1999; 93(4):349-58. PubMed ID: 10574123
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Presynaptic inhibition of exteroceptive afferents by proprioceptive afferents in the terminal abdominal ganglion of the crayfish.
    Newland PL; Aonuma H; Sato M; Nagayama T
    J Neurophysiol; 1996 Aug; 76(2):1047-58. PubMed ID: 8871219
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shunting versus inactivation: analysis of presynaptic inhibitory mechanisms in primary afferents of the crayfish.
    Cattaert D; El Manira A
    J Neurosci; 1999 Jul; 19(14):6079-89. PubMed ID: 10407044
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Primary afferent depolarizations of sensory origin within contact-sensitive mechanoreceptive afferents of a crayfish leg.
    Marchand AR; Barnes WJ; Cattaert D
    J Neurophysiol; 1997 Jun; 77(6):3340-54. PubMed ID: 9212279
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of antidromic discharges in crayfish primary afferents.
    Cattaert D; Bévengut M
    J Neurophysiol; 2002 Oct; 88(4):1753-65. PubMed ID: 12364504
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Presynaptic inhibition is mediated by histamine and GABA in the crustacean escape reaction.
    el Manira A; Clarac F
    J Neurophysiol; 1994 Mar; 71(3):1088-95. PubMed ID: 8201404
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antidromic modulation of a proprioceptor sensory discharge in crayfish.
    Bévengut M; Clarac F; Cattaert D
    J Neurophysiol; 1997 Aug; 78(2):1180-3. PubMed ID: 9307148
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extrasynaptic α
    Lucas-Osma AM; Li Y; Lin S; Black S; Singla R; Fouad K; Fenrich KK; Bennett DJ
    J Neurophysiol; 2018 Dec; 120(6):2953-2974. PubMed ID: 30256739
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Presynaptic inhibition in the crayfish CNS: pathways and synaptic mechanisms.
    Kirk MD
    J Neurophysiol; 1985 Nov; 54(5):1305-25. PubMed ID: 3001237
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combined Changes in Chloride Regulation and Neuronal Excitability Enable Primary Afferent Depolarization to Elicit Spiking without Compromising its Inhibitory Effects.
    Takkala P; Zhu Y; Prescott SA
    PLoS Comput Biol; 2016 Nov; 12(11):e1005215. PubMed ID: 27835641
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Block of glutamate decarboxylase decreases GABAergic inhibition at the crayfish synapses: possible role of presynaptic metabotropic mechanisms.
    Golan H; Grossman Y
    J Neurophysiol; 1996 May; 75(5):2089-98. PubMed ID: 8734605
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Central control of the sensory afferent terminals from a leg chordotonal organ in crayfish in vitro preparation.
    Cattaert D; elManira A; Marchand A; Clarac F
    Neurosci Lett; 1990 Jan; 108(1-2):81-7. PubMed ID: 2304643
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Central inhibitory microcircuits controlling spike propagation into sensory terminals.
    Watson A; Le Bon-Jego M; Cattaert D
    J Comp Neurol; 2005 Apr; 484(2):234-48. PubMed ID: 15736226
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A presynaptic gain control mechanism among sensory neurons of a locust leg proprioceptor.
    Burrows M; Matheson T
    J Neurosci; 1994 Jan; 14(1):272-82. PubMed ID: 8283235
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Presynaptic modulation of sensory neurons in the segmental ganglia of arthropods.
    Watson AH
    Microsc Res Tech; 2002 Aug; 58(4):262-71. PubMed ID: 12214294
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two types of identified ascending interneurons with distinct GABA receptors in the crayfish terminal abdominal ganglion.
    Miyata H; Nagayama T; Takahata M
    J Neurophysiol; 1997 Mar; 77(3):1213-23. PubMed ID: 9084591
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synaptic potentials in the central terminals of locust proprioceptive afferents generated by other afferents from the same sense organ.
    Burrows M; Laurent G
    J Neurosci; 1993 Feb; 13(2):808-19. PubMed ID: 8426238
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.