BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

464 related articles for article (PubMed ID: 7889570)

  • 1. Mad-Max transcriptional repression is mediated by ternary complex formation with mammalian homologs of yeast repressor Sin3.
    Ayer DE; Lawrence QA; Eisenman RN
    Cell; 1995 Mar; 80(5):767-76. PubMed ID: 7889570
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mad proteins contain a dominant transcription repression domain.
    Ayer DE; Laherty CD; Lawrence QA; Armstrong AP; Eisenman RN
    Mol Cell Biol; 1996 Oct; 16(10):5772-81. PubMed ID: 8816491
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An amino-terminal domain of Mxi1 mediates anti-Myc oncogenic activity and interacts with a homolog of the yeast transcriptional repressor SIN3.
    Schreiber-Agus N; Chin L; Chen K; Torres R; Rao G; Guida P; Skoultchi AI; DePinho RA
    Cell; 1995 Mar; 80(5):777-86. PubMed ID: 7889571
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rox, a novel bHLHZip protein expressed in quiescent cells that heterodimerizes with Max, binds a non-canonical E box and acts as a transcriptional repressor.
    Meroni G; Reymond A; Alcalay M; Borsani G; Tanigami A; Tonlorenzi R; Lo Nigro C; Messali S; Zollo M; Ledbetter DH; Brent R; Ballabio A; Carrozzo R
    EMBO J; 1997 May; 16(10):2892-906. PubMed ID: 9184233
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mnt, a novel Max-interacting protein is coexpressed with Myc in proliferating cells and mediates repression at Myc binding sites.
    Hurlin PJ; Quéva C; Eisenman RN
    Genes Dev; 1997 Jan; 11(1):44-58. PubMed ID: 9000049
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sin3 corepressor function in Myc-induced transcription and transformation.
    Harper SE; Qiu Y; Sharp PA
    Proc Natl Acad Sci U S A; 1996 Aug; 93(16):8536-40. PubMed ID: 8710905
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Histone deacetylases associated with the mSin3 corepressor mediate mad transcriptional repression.
    Laherty CD; Yang WM; Sun JM; Davie JR; Seto E; Eisenman RN
    Cell; 1997 May; 89(3):349-56. PubMed ID: 9150134
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mmip1: a novel leucine zipper protein that reverses the suppressive effects of Mad family members on c-myc.
    Gupta K; Anand G; Yin X; Grove L; Prochownik EV
    Oncogene; 1998 Mar; 16(9):1149-59. PubMed ID: 9528857
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mad3 and Mad4: novel Max-interacting transcriptional repressors that suppress c-myc dependent transformation and are expressed during neural and epidermal differentiation.
    Hurlin PJ; Quéva C; Koskinen PJ; Steingrímsson E; Ayer DE; Copeland NG; Jenkins NA; Eisenman RN
    EMBO J; 1995 Nov; 14(22):5646-59. PubMed ID: 8521822
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mouse Sin3A interacts with and can functionally substitute for the amino-terminal repression of the Myc antagonist Mxi1.
    Rao G; Alland L; Guida P; Schreiber-Agus N; Chen K; Chin L; Rochelle JM; Seldin MF; Skoultchi AI; DePinho RA
    Oncogene; 1996 Mar; 12(5):1165-72. PubMed ID: 8649810
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptional regulation. Flipping the Myc switch.
    Bernards R
    Curr Biol; 1995 Aug; 5(8):859-61. PubMed ID: 7583141
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mad: a heterodimeric partner for Max that antagonizes Myc transcriptional activity.
    Ayer DE; Kretzner L; Eisenman RN
    Cell; 1993 Jan; 72(2):211-22. PubMed ID: 8425218
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mlx, a novel Max-like BHLHZip protein that interacts with the Max network of transcription factors.
    Billin AN; Eilers AL; Queva C; Ayer DE
    J Biol Chem; 1999 Dec; 274(51):36344-50. PubMed ID: 10593926
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of the Sin3-binding site in Ume6 defines a two-step process for conversion of Ume6 from a transcriptional repressor to an activator in yeast.
    Washburn BK; Esposito RE
    Mol Cell Biol; 2001 Mar; 21(6):2057-69. PubMed ID: 11238941
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extension of the binding motif of the Sin3 interacting domain of the Mad family proteins.
    van Ingen H; Lasonder E; Jansen JF; Kaan AM; Spronk CA; Stunnenberg HG; Vuister GW
    Biochemistry; 2004 Jan; 43(1):46-54. PubMed ID: 14705930
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolutionary relationships and functional conservation among vertebrate Max-associated proteins: the zebra fish homolog of Mxi1.
    Schreiber-Agus N; Chin L; Chen K; Torres R; Thomson CT; Sacchettini JC; DePinho RA
    Oncogene; 1994 Nov; 9(11):3167-77. PubMed ID: 7936639
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Histone deacetylase activity is required for full transcriptional repression by mSin3A.
    Hassig CA; Fleischer TC; Billin AN; Schreiber SL; Ayer DE
    Cell; 1997 May; 89(3):341-7. PubMed ID: 9150133
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A switch from Myc:Max to Mad:Max heterocomplexes accompanies monocyte/macrophage differentiation.
    Ayer DE; Eisenman RN
    Genes Dev; 1993 Nov; 7(11):2110-9. PubMed ID: 8224841
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SIN3-dependent transcriptional repression by interaction with the Mad1 DNA-binding protein.
    Kasten MM; Ayer DE; Stillman DJ
    Mol Cell Biol; 1996 Aug; 16(8):4215-21. PubMed ID: 8754821
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular determinants of the interaction of Mad with the PAH2 domain of mSin3.
    Le Guezennec X; Vriend G; Stunnenberg HG
    J Biol Chem; 2004 Jun; 279(24):25823-9. PubMed ID: 15047710
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.