BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 7890185)

  • 1. Clinical heterogeneity of dominant optic atrophy: the contribution of visual function investigations to diagnosis.
    Del Porto G; Vingolo EM; Steindl K; Forte R; Iannaccone A; Rispoli E; Pannarale MR
    Graefes Arch Clin Exp Ophthalmol; 1994 Dec; 232(12):717-27. PubMed ID: 7890185
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrophysiology and colour perimetry in dominant infantile optic atrophy.
    Berninger TA; Jaeger W; Krastel H
    Br J Ophthalmol; 1991 Jan; 75(1):49-52. PubMed ID: 1991088
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Clinical features in affected individuals from 21 pedigrees with dominant optic atrophy.
    Votruba M; Fitzke FW; Holder GE; Carter A; Bhattacharya SS; Moore AT
    Arch Ophthalmol; 1998 Mar; 116(3):351-8. PubMed ID: 9514489
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visual recovery in a patient with Leber hereditary optic neuropathy and the 14484 mutation.
    Hrynchak PK; Spafford MM
    Optom Vis Sci; 1994 Oct; 71(10):604-12. PubMed ID: 7877803
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Disc excavation in dominant optic atrophy: differentiation from normal tension glaucoma.
    Fournier AV; Damji KF; Epstein DL; Pollock SC
    Ophthalmology; 2001 Sep; 108(9):1595-602. PubMed ID: 11535456
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrophysiological findings in dominant optic atrophy (DOA) linking to the OPA1 locus on chromosome 3q 28-qter.
    Holder GE; Votruba M; Carter AC; Bhattacharya SS; Fitzke FW; Moore AT
    Doc Ophthalmol; 1998-1999; 95(3-4):217-28. PubMed ID: 10532406
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visual function in recovered ethambutol optic neuropathy.
    Woung LC; Jou JR; Liaw SL
    J Ocul Pharmacol Ther; 1995; 11(3):411-9. PubMed ID: 8590273
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rod thresholds in dominantly inherited juvenile optic atrophy.
    Elenius V; Leinonen M; Airas K
    Ophthalmologica; 1991; 202(4):208-12. PubMed ID: 1945301
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visual-evoked potentials to onset of chromatic red-green and blue-yellow gratings in Parkinson's disease never treated with L-dopa.
    Sartucci F; Porciatti V
    J Clin Neurophysiol; 2006 Oct; 23(5):431-5. PubMed ID: 17016154
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Results of static perimetry in subclinical optic neuritis in multiple sclerosis].
    Mauguière F; Perret-Magloire E
    Rev Neurol (Paris); 1983; 139(12):745-52. PubMed ID: 6665389
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Clinical and genetic analysis of a family affected with dominant optic atrophy (OPA1).
    Brown J; Fingert JH; Taylor CM; Lake M; Sheffield VC; Stone EM
    Arch Ophthalmol; 1997 Jan; 115(1):95-9. PubMed ID: 9006432
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The pupil in dominant optic atrophy.
    Bremner FD; Tomlin EA; Shallo-Hoffmann J; Votruba M; Smith SE
    Invest Ophthalmol Vis Sci; 2001 Mar; 42(3):675-8. PubMed ID: 11222526
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amplitude of the transient visual evoked potential (tVEP) as a function of achromatic and chromatic contrast: contribution of different visual pathways.
    Souza GS; Gomes BD; Lacerda EM; Saito CA; da Silva Filho M; Silveira LC
    Vis Neurosci; 2008; 25(3):317-25. PubMed ID: 18321403
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chromatic modulation of luminance visual evoked potential latencies in healthy subjects and patients with mild vision disorders.
    Accornero N; Gregori B; Pro S; Scappini G; La Riccia M
    Clin Neurophysiol; 2008 Jul; 119(7):1683-8. PubMed ID: 18455475
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Objective assessment of chromatic and achromatic pattern adaptation reveals the temporal response properties of different visual pathways.
    Robson AG; Kulikowski JJ
    Vis Neurosci; 2012 Nov; 29(6):301-13. PubMed ID: 23206417
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic heterogeneity of dominant optic atrophy, Kjer type: Identification of a second locus on chromosome 18q12.2-12.3.
    Kerrison JB; Arnould VJ; Ferraz Sallum JM; Vagefi MR; Barmada MM; Li Y; Zhu D; Maumenee IH
    Arch Ophthalmol; 1999 Jun; 117(6):805-10. PubMed ID: 10369594
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Retinal and cortical evoked responses to chromatic contrast stimuli. Specific losses in both eyes of patients with multiple sclerosis and unilateral optic neuritis.
    Porciatti V; Sartucci F
    Brain; 1996 Jun; 119 ( Pt 3)():723-40. PubMed ID: 8673486
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dominant optic atrophy. Refining the clinical diagnostic criteria in light of genetic linkage studies.
    Johnston RL; Seller MJ; Behnam JT; Burdon MA; Spalton DJ
    Ophthalmology; 1999 Jan; 106(1):123-8. PubMed ID: 9917792
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Sensory physiology and biomorphology of the optic papilla: analysis of correlation in normal persons].
    Jünemann A; Horn F; Martus P; Jonas JB; Korth M
    Klin Monbl Augenheilkd; 1996 Nov; 209(5):286-91. PubMed ID: 9044976
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dominant optic atrophy. The clinical profile.
    Kline LB; Glaser JS
    Arch Ophthalmol; 1979 Sep; 97(9):1680-6. PubMed ID: 314284
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.