These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 7890334)

  • 1. Glial development in primary cultures established from normal and X-irradiated neonatal spinal cord.
    Sims TJ; Davies DL; Gilmore SA
    Glia; 1994 Dec; 12(4):319-28. PubMed ID: 7890334
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spinal cord astrocytes in vitro: phenotypic diversity and sodium channel immunoreactivity.
    Black JA; Sontheimer H; Waxman SG
    Glia; 1993 Apr; 7(4):272-85. PubMed ID: 8391514
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microglial development is altered in immature spinal cord by exposure to radiation.
    Gilmore SA; Sims TJ; Davies DL; Durgun MB
    Int J Dev Neurosci; 1997 Feb; 15(1):1-14. PubMed ID: 9099611
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isoform-specific expression of sodium channels in astrocytes in vitro: immunocytochemical observations.
    Black JA; Westenbroek R; Minturn JE; Ransom BR; Catterall WA; Waxman SG
    Glia; 1995 Jun; 14(2):133-44. PubMed ID: 7558240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glial response to dorsal root lesion in the irradiated spinal cord.
    Sims TJ; Gilmore SA
    Glia; 1992; 6(2):96-107. PubMed ID: 1398898
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glial cells have heart: rH1 Na+ channel mRNA and protein in spinal cord astrocytes.
    Black JA; Dib-Hajj S; Cohen S; Hinson AW; Waxman SG
    Glia; 1998 Jul; 23(3):200-8. PubMed ID: 9633805
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distribution and differentiation of A2B5+ glial precursors in the developing rat spinal cord.
    Fok-Seang J; Miller RH
    J Neurosci Res; 1994 Feb; 37(2):219-35. PubMed ID: 8151730
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Early postnatal development of glial cells in the canine cervical spinal cord.
    Lord KE; Duncan ID
    J Comp Neurol; 1987 Nov; 265(1):34-46. PubMed ID: 3693603
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparison of histopathologic changes following X-irradiation of mid-thoracic and lumbosacral levels of neonatal rat spinal cord.
    Heard JK; Gilmore SA
    Anat Rec; 1985 Feb; 211(2):198-204. PubMed ID: 3977087
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Brain-derived neurotrophic factor in astrocytes, oligodendrocytes, and microglia/macrophages after spinal cord injury.
    Dougherty KD; Dreyfus CF; Black IB
    Neurobiol Dis; 2000 Dec; 7(6 Pt B):574-85. PubMed ID: 11114257
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glial-glial and glial-neuronal interfaces in radiation-induced, glia-depleted spinal cord.
    Gilmore SA; Sims TJ
    J Anat; 1997 Jan; 190 ( Pt 1)(Pt 1):5-21. PubMed ID: 9034878
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A qualitative and quantitative study of the glial cells in normal and athymic mice.
    Htain WW; Leong SK; Ling EA
    Glia; 1995 Sep; 15(1):11-21. PubMed ID: 8847097
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Embryonic-derived glial-restricted precursor cells (GRP cells) can differentiate into astrocytes and oligodendrocytes in vivo.
    Herrera J; Yang H; Zhang SC; Proschel C; Tresco P; Duncan ID; Luskin M; Mayer-Proschel M
    Exp Neurol; 2001 Sep; 171(1):11-21. PubMed ID: 11520117
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lines of glial precursor cells immortalised with a temperature-sensitive oncogene give rise to astrocytes and oligodendrocytes following transplantation into demyelinated lesions in the central nervous system.
    Trotter J; Crang AJ; Schachner M; Blakemore WF
    Glia; 1993 Sep; 9(1):25-40. PubMed ID: 8244529
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Late effects of radiation on the central nervous system: role of vascular endothelial damage and glial stem cell survival.
    Coderre JA; Morris GM; Micca PL; Hopewell JW; Verhagen I; Kleiboer BJ; van der Kogel AJ
    Radiat Res; 2006 Sep; 166(3):495-503. PubMed ID: 16953668
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mixed primary culture and clonal analysis provide evidence that NG2 proteoglycan-expressing cells after spinal cord injury are glial progenitors.
    Yoo S; Wrathall JR
    Dev Neurobiol; 2007 Jun; 67(7):860-74. PubMed ID: 17506499
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cellular composition of long-term human spinal cord- and forebrain-derived neurosphere cultures.
    Piao JH; Odeberg J; Samuelsson EB; Kjaeldgaard A; Falci S; Seiger A; Sundström E; Akesson E
    J Neurosci Res; 2006 Aug; 84(3):471-82. PubMed ID: 16721767
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proliferation of non-neuronal cells in spinal cords of irradiated, immature rats following transection of the sciatic nerve.
    Gilmore SA
    Anat Rec; 1975 Apr; 181(4):799-811. PubMed ID: 47232
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Radiation-induced apoptosis in the neonatal and adult rat spinal cord.
    Li YQ; Wong CS
    Radiat Res; 2000 Sep; 154(3):268-76. PubMed ID: 10956432
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Olfactory ensheathing cells exhibit unique migratory, phagocytic, and myelinating properties in the X-irradiated spinal cord not shared by Schwann cells.
    Lankford KL; Sasaki M; Radtke C; Kocsis JD
    Glia; 2008 Nov; 56(15):1664-78. PubMed ID: 18551623
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.