These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 7890489)

  • 21. Relationship between ciliary blood flow and aqueous production in rabbits.
    Reitsamer HA; Kiel JW
    Invest Ophthalmol Vis Sci; 2003 Sep; 44(9):3967-71. PubMed ID: 12939316
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bilateral superior cervical ganglionectomy increases choroidal blood flow in the rabbit.
    Chou P; Lu DW; Chen JT
    Ophthalmologica; 2000; 214(6):421-5. PubMed ID: 11054003
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of moderate changes in intraocular pressure on ocular hemodynamics in patients with primary open-angle glaucoma and healthy controls.
    Weigert G; Findl O; Luksch A; Rainer G; Kiss B; Vass C; Schmetterer L
    Ophthalmology; 2005 Aug; 112(8):1337-42. PubMed ID: 16024084
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [In vivo measurement of ocular circulation with the laser speckle method--development of apparatus and application in ophthalmological research].
    Araie M
    Nippon Ganka Gakkai Zasshi; 1999 Dec; 103(12):871-909. PubMed ID: 10643292
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Disruption of gap junctions may be involved in impairment of autoregulation in optic nerve head blood flow of diabetic rabbits.
    Shibata M; Oku H; Sugiyama T; Kobayashi T; Tsujimoto M; Okuno T; Ikeda T
    Invest Ophthalmol Vis Sci; 2011 Apr; 52(5):2153-9. PubMed ID: 21220555
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Factors Associated With Choroidal Blood Flow Regulation in Healthy Young Subjects.
    Schmidl D; Schmetterer L; Witkowska KJ; Rauch A; Werkmeister RM; Garhöfer G; Popa-Cherecheanu A
    Invest Ophthalmol Vis Sci; 2016 Oct; 57(13):5705-5713. PubMed ID: 27787558
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of inhibition of nitric oxide synthase on basal anterior segment ocular blood flows and on potential autoregulatory mechanisms.
    Koss MC
    J Ocul Pharmacol Ther; 2001 Aug; 17(4):319-29. PubMed ID: 11572463
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Time course of changes in optic nerve head circulation after acute reduction in intraocular pressure.
    Takayama J; Tomidokoro A; Tamaki Y; Araie M
    Invest Ophthalmol Vis Sci; 2005 Apr; 46(4):1409-19. PubMed ID: 15790909
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of isometric exercise on subfoveal choroidal blood flow in smokers and nonsmokers.
    Wimpissinger B; Resch H; Berisha F; Weigert G; Polak K; Schmetterer L
    Invest Ophthalmol Vis Sci; 2003 Nov; 44(11):4859-63. PubMed ID: 14578409
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The influence of posture change on ocular blood flow in normal subjects, measured by laser speckle flowgraphy.
    Shiga Y; Shimura M; Asano T; Tsuda S; Yokoyama Y; Aizawa N; Omodaka K; Ryu M; Yokokura S; Takeshita T; Nakazawa T
    Curr Eye Res; 2013 Jun; 38(6):691-8. PubMed ID: 23654357
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Autoregulation of human optic nerve head circulation in response to increased intraocular pressure.
    Pillunat LE; Anderson DR; Knighton RW; Joos KM; Feuer WJ
    Exp Eye Res; 1997 May; 64(5):737-44. PubMed ID: 9245904
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Choroidal hemodynamic changes during isometric exercise in patients with inactive central serous chorioretinopathy.
    Tittl M; Maar N; Polska E; Weigert G; Stur M; Schmetterer L
    Invest Ophthalmol Vis Sci; 2005 Dec; 46(12):4717-21. PubMed ID: 16303970
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modulation of choroidal autoregulation in the rabbit.
    Kiel JW
    Exp Eye Res; 1999 Oct; 69(4):413-29. PubMed ID: 10504275
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Choroidal blood flow during isometric exercises.
    Riva CE; Titze P; Hero M; Movaffaghy A; Petrig BL
    Invest Ophthalmol Vis Sci; 1997 Oct; 38(11):2338-43. PubMed ID: 9344357
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Choroidal blood flow during exercise-induced changes in the ocular perfusion pressure.
    Lovasik JV; Kergoat H; Riva CE; Petrig BL; Geiser M
    Invest Ophthalmol Vis Sci; 2003 May; 44(5):2126-32. PubMed ID: 12714652
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Role of adenosine in the control of choroidal blood flow during changes in ocular perfusion pressure.
    Schmidl D; Weigert G; Dorner GT; Resch H; Kolodjaschna J; Wolzt M; Garhofer G; Schmetterer L
    Invest Ophthalmol Vis Sci; 2011 Jul; 52(8):6035-9. PubMed ID: 21697134
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Choroidal vascular reaction to hand-grip stress in subjects with vasospasm and its relevance in glaucoma.
    Gugleta K; Orgül S; Hasler PW; Picornell T; Gherghel D; Flammer J
    Invest Ophthalmol Vis Sci; 2003 Apr; 44(4):1573-80. PubMed ID: 12657594
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Effect of decreased ocular perfusion pressure on iris blood flow measured by laser Doppler flowmetry].
    Chamot SR; Movaffaghy A; Petrig BL; Riva CE
    Klin Monbl Augenheilkd; 1999 May; 214(5):302-4. PubMed ID: 10420373
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Autoregulation of retinal blood flow in response to decreased ocular perfusion pressure in cats: comparison of the effects of increased intraocular pressure and systemic hypotension.
    Tani T; Nagaoka T; Nakabayashi S; Yoshioka T; Yoshida A
    Invest Ophthalmol Vis Sci; 2014 Jan; 55(1):360-7. PubMed ID: 24302588
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Choroidal laser Doppler flowmetry in healthy subjects.
    Straubhaar M; Orgül S; Gugleta K; Schötzau A; Erb C; Flammer J
    Arch Ophthalmol; 2000 Feb; 118(2):211-5. PubMed ID: 10676786
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.