These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 7890636)

  • 1. Functional reconstitution of the purified mannose phosphotransferase system of Escherichia coli into phospholipid vesicles.
    Mao Q; Schunk T; Flükiger K; Erni B
    J Biol Chem; 1995 Mar; 270(10):5258-65. PubMed ID: 7890636
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Purification by Ni2+ affinity chromatography, and functional reconstitution of the transporter for N-acetylglucosamine of Escherichia coli.
    Mukhija S; Erni B
    J Biol Chem; 1996 Jun; 271(25):14819-24. PubMed ID: 8662917
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional reconstitution of the purified phosphoenolpyruvate-dependent mannitol-specific transport system of Escherichia coli in phospholipid vesicles: coupling between transport and phosphorylation.
    Elferink MG; Driessen AJ; Robillard GT
    J Bacteriol; 1990 Dec; 172(12):7119-25. PubMed ID: 2123863
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The mannose transporter of Escherichia coli K12: oligomeric structure, and function of two conserved cysteines.
    Rhiel E; Flükiger K; Wehrli C; Erni B
    Biol Chem Hoppe Seyler; 1994 Aug; 375(8):551-9. PubMed ID: 7811395
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of phosphoryl transfer in the dimeric IIABMan subunit of the Escherichia coli mannose transporter.
    Gutknecht R; Flükiger K; Lanz R; Erni B
    J Biol Chem; 1999 Mar; 274(10):6091-6. PubMed ID: 10037691
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mannitol-specific enzyme II of the bacterial phosphotransferase system. II. Reconstitution of vectorial transphosphorylation in phospholipid vesicles.
    Leonard JE; Saier MH
    J Biol Chem; 1983 Sep; 258(17):10757-60. PubMed ID: 6350294
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional interactions between proteins of the phosphoenolpyruvate:sugar phosphotransferase systems of Bacillus subtilis and Escherichia coli.
    Reizer J; Sutrina SL; Wu LF; Deutscher J; Reddy P; Saier MH
    J Biol Chem; 1992 May; 267(13):9158-69. PubMed ID: 1577753
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of catalytic residues in the beta-glucoside permease of Escherichia coli by site-specific mutagenesis and demonstration of interdomain cross-reactivity between the beta-glucoside and glucose systems.
    Schnetz K; Sutrina SL; Saier MH; Rak B
    J Biol Chem; 1990 Aug; 265(23):13464-71. PubMed ID: 2199437
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mannose permease of Escherichia coli. Domain structure and function of the phosphorylating subunit.
    Erni B; Zanolari B; Graff P; Kocher HP
    J Biol Chem; 1989 Nov; 264(31):18733-41. PubMed ID: 2681202
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutational analysis of invariant arginines in the IIAB(Man) subunit of the Escherichia coli phosphotransferase system.
    Gutknecht R; Lanz R; Erni B
    J Biol Chem; 1998 May; 273(20):12234-8. PubMed ID: 9575172
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The glucose transporter of Escherichia coli. Overexpression, purification, and characterization of functional domains.
    Buhr A; Flükiger K; Erni B
    J Biol Chem; 1994 Sep; 269(38):23437-43. PubMed ID: 8089109
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cysteine phosphorylation of the glucose transporter of Escherichia coli.
    Meins M; Jenö P; Müller D; Richter WJ; Rosenbusch JP; Erni B
    J Biol Chem; 1993 Jun; 268(16):11604-9. PubMed ID: 8505292
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of mutations and truncations on the kinetic behavior of IIAGlc, a phosphocarrier and regulatory protein of the phosphoenolpyruvate phosphotransferase system of Escherichia coli.
    Meadow ND; Savtchenko RS; Remington SJ; Roseman S
    J Biol Chem; 2006 Apr; 281(17):11450-5. PubMed ID: 16439362
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of the maltose transport system of Escherichia coli by the glucose-specific enzyme III of the phosphoenolpyruvate-sugar phosphotransferase system. Characterization of inducer exclusion-resistant mutants and reconstitution of inducer exclusion in proteoliposomes.
    Dean DA; Reizer J; Nikaido H; Saier MH
    J Biol Chem; 1990 Dec; 265(34):21005-10. PubMed ID: 2250006
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression and characterization of a structural and functional domain of the mannitol-specific transport protein involved in the coupling of mannitol transport and phosphorylation in the phosphoenolpyruvate-dependent phosphotransferase system of Escherichia coli.
    Robillard GT; Boer H; van Weeghel RP; Wolters G; Dijkstra A
    Biochemistry; 1993 Sep; 32(37):9553-62. PubMed ID: 8373762
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of a site in the phosphocarrier protein, HPr, which influences its interactions with sugar permeases of the bacterial phosphotransferase system: kinetic analyses employing site-specific mutants.
    Koch S; Sutrina SL; Wu LF; Reizer J; Schnetz K; Rak B; Saier MH
    J Bacteriol; 1996 Feb; 178(4):1126-33. PubMed ID: 8576048
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Membrane topology of the mannose transporter of Escherichia coli K12.
    Huber F; Erni B
    Eur J Biochem; 1996 Aug; 239(3):810-7. PubMed ID: 8774730
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sugar recognition by the glucose and mannose permeases of Escherichia coli. Steady-state kinetics and inhibition studies.
    García-Alles LF; Zahn A; Erni B
    Biochemistry; 2002 Aug; 41(31):10077-86. PubMed ID: 12146972
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sugar transport by the bacterial phosphotransferase system. Phosphoryl transfer reactions catalyzed by enzyme I of Salmonella typhimurium.
    Weigel N; Kukuruzinska MA; Nakazawa A; Waygood EB; Roseman S
    J Biol Chem; 1982 Dec; 257(23):14477-91. PubMed ID: 6754730
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The glucose transporter of Escherichia coli with circularly permuted domains is active in vivo and in vitro.
    Gutknecht R; Manni M; Mao Q; Erni B
    J Biol Chem; 1998 Oct; 273(40):25745-50. PubMed ID: 9748244
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.