These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 7890644)

  • 1. Stereoselective hydroxylation of norcamphor by cytochrome P450cam. Experimental verification of molecular dynamics simulations.
    Loida PJ; Sligar SG; Paulsen MD; Arnold GE; Ornstein RL
    J Biol Chem; 1995 Mar; 270(10):5326-30. PubMed ID: 7890644
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlling the regiospecificity and coupling of cytochrome P450cam: T185F mutant increases coupling and abolishes 3-hydroxynorcamphor product.
    Paulsen MD; Filipovic D; Sligar SG; Ornstein RL
    Protein Sci; 1993 Mar; 2(3):357-65. PubMed ID: 8453374
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting the product specificity and coupling of cytochrome P450cam.
    Paulsen MD; Ornstein RL
    J Comput Aided Mol Des; 1992 Oct; 6(5):449-60. PubMed ID: 1474394
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical study of the product specificity in the hydroxylation of camphor, norcamphor, 5,5-difluorocamphor, and pericyclocamphanone by cytochrome P-450cam.
    Collins JR; Loew GH
    J Biol Chem; 1988 Mar; 263(7):3164-70. PubMed ID: 3343243
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ethylbenzene hydroxylation by cytochrome P450cam.
    Filipovic D; Paulsen MD; Loida PJ; Sligar SG; Ornstein RL
    Biochem Biophys Res Commun; 1992 Nov; 189(1):488-95. PubMed ID: 1449498
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The structural basis for substrate-induced changes in redox potential and spin equilibrium in cytochrome P-450CAM.
    Raag R; Poulos TL
    Biochemistry; 1989 Jan; 28(2):917-22. PubMed ID: 2713354
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Substrate mobility in thiocamphor-bound cytochrome P450cam: an explanation of the conflict between the observed product profile and the X-ray structure.
    Paulsen MD; Ornstein RL
    Protein Eng; 1993 Jun; 6(4):359-65. PubMed ID: 8332592
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deuterium isotope effects in norcamphor metabolism by cytochrome P-450cam: kinetic evidence for the two-electron reduction of a high-valent iron-oxo intermediate.
    Atkins WM; Sligar SG
    Biochemistry; 1988 Mar; 27(5):1610-6. PubMed ID: 3284586
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of active site motions from a 175 picosecond molecular dynamics simulation of camphor-bound cytochrome P450cam.
    Paulsen MD; Bass MB; Ornstein RL
    J Biomol Struct Dyn; 1991 Oct; 9(2):187-203. PubMed ID: 1741957
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Specific and non-specific effects of potassium cations on substrate-protein interactions in cytochromes P450cam and P450lin.
    Deprez E; Gill E; Helms V; Wade RC; Hui Bon Hoa G
    J Inorg Biochem; 2002 Sep; 91(4):597-606. PubMed ID: 12237225
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Active sites of the cytochrome p450cam (CYP101) F87W and F87A mutants. Evidence for significant structural reorganization without alteration of catalytic regiospecificity.
    Tuck SF; Graham-Lorence S; Peterson JA; Ortiz de Montellano PR
    J Biol Chem; 1993 Jan; 268(1):269-75. PubMed ID: 8416934
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cytochrome P450cam-monoterpene interactions.
    Van Roon A; Parsons JR; Govers HA
    SAR QSAR Environ Res; 2005 Aug; 16(4):369-84. PubMed ID: 16234177
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved binding of cytochrome P450cam substrate analogues designed to fill extra space in the substrate binding pocket.
    Helms V; Deprez E; Gill E; Barret C; Hui Bon Hoa G; Wade RC
    Biochemistry; 1996 Feb; 35(5):1485-99. PubMed ID: 8634279
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stereochemistry and deuterium isotope effects in camphor hydroxylation by the cytochrome P450cam monoxygenase system.
    Gelb MH; Heimbrook DC; Mälkönen P; Sligar SG
    Biochemistry; 1982 Jan; 21(2):370-7. PubMed ID: 7074020
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How do substrates enter and products exit the buried active site of cytochrome P450cam? 1. Random expulsion molecular dynamics investigation of ligand access channels and mechanisms.
    Lüdemann SK; Lounnas V; Wade RC
    J Mol Biol; 2000 Nov; 303(5):797-811. PubMed ID: 11061976
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Substrate mobility in a deeply buried active site: analysis of norcamphor bound to cytochrome P-450cam as determined by a 201-psec molecular dynamics simulation.
    Bass MB; Paulsen MD; Ornstein RL
    Proteins; 1992 May; 13(1):26-37. PubMed ID: 1594575
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics underlying hydroxylation selectivity of cytochrome P450cam.
    Ramos S; Mammoser CC; Thibodeau KE; Thielges MC
    Biophys J; 2021 Mar; 120(5):912-923. PubMed ID: 33545101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxygen activation by cytochrome P450BM-3: effects of mutating an active site acidic residue.
    Yeom H; Sligar SG
    Arch Biochem Biophys; 1997 Jan; 337(2):209-16. PubMed ID: 9016815
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydroxylation of specifically deuterated limonene enantiomers by cytochrome p450 limonene-6-hydroxylase reveals the mechanism of multiple product formation.
    Wüst M; Croteau RB
    Biochemistry; 2002 Feb; 41(6):1820-7. PubMed ID: 11827526
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mobility of norbornane-type substrates and water accessibility in cytochrome P-450cam.
    Schulze H; Hoa GH; Jung C
    Biochim Biophys Acta; 1997 Mar; 1338(1):77-92. PubMed ID: 9074618
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.