These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 7890663)

  • 1. Carboxyl-terminal domain truncation alters apolipoprotein A-I in vivo catabolism.
    Schmidt HH; Remaley AT; Stonik JA; Ronan R; Wellmann A; Thomas F; Zech LA; Brewer HB; Hoeg JM
    J Biol Chem; 1995 Mar; 270(10):5469-75. PubMed ID: 7890663
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo kinetics as a sensitive method for testing physiologically intact human recombinant apolipoprotein A-I: comparison of three different expression systems.
    Schmidt HH; Haas RE; Remaley A; Genschel J; Strassburg CP; Büttner C; Manns MP
    Clin Chim Acta; 1997 Dec; 268(1-2):41-60. PubMed ID: 9495570
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of deletion of the carboxyl-terminal domain of ApoA-I or of its substitution with helices of ApoA-II on in vitro and in vivo lipoprotein association.
    Holvoet P; Zhao Z; Deridder E; Dhoest A; Collen D
    J Biol Chem; 1996 Aug; 271(32):19395-401. PubMed ID: 8702626
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The carboxyl-terminal hydrophobic residues of apolipoprotein A-I affect its rate of phospholipid binding and its association with high density lipoprotein.
    Laccotripe M; Makrides SC; Jonas A; Zannis VI
    J Biol Chem; 1997 Jul; 272(28):17511-22. PubMed ID: 9211897
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid in vivo transport and catabolism of human apolipoprotein A-IV-1 and slower catabolism of the apoA-IV-2 isoprotein.
    Rader DJ; Schäfer J; Lohse P; Verges B; Kindt M; Zech LA; Steinmetz A; Brewer HB
    J Clin Invest; 1993 Aug; 92(2):1009-17. PubMed ID: 8349786
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of the Arg123-Tyr166 paired helix of apolipoprotein A-I in lecithin:cholesterol acyltransferase activation.
    Dhoest A; Zhao Z; De Geest B; Deridder E; Sillen A; Engelborghs Y; Collen D; Holvoet P
    J Biol Chem; 1997 Jun; 272(25):15967-72. PubMed ID: 9188498
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bacterial expression and characterization of mature apolipoprotein A-I.
    Panagotopulos SE; Witting SR; Horace EM; Nicholas Maiorano J; Sean Davidson W
    Protein Expr Purif; 2002 Jul; 25(2):353-61. PubMed ID: 12135571
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolism of apoA-I as lipid-free protein or as component of discoidal and spherical reconstituted HDLs: studies in wild-type and hepatic lipase transgenic rabbits.
    Kee P; Rye KA; Taylor JL; Barrett PH; Barter PJ
    Arterioscler Thromb Vasc Biol; 2002 Nov; 22(11):1912-7. PubMed ID: 12426224
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Apolipoprotein A-I alpha -helices 7 and 8 modulate high density lipoprotein subclass distribution.
    Reschly EJ; Sorci-Thomas MG; Davidson WS; Meredith SC; Reardon CA; Getz GS
    J Biol Chem; 2002 Mar; 277(12):9645-54. PubMed ID: 11744719
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bacterial expression and characterization of chicken apolipoprotein A-I.
    Kiss RS; Kay CM; Ryan RO
    Protein Expr Purif; 1998 Apr; 12(3):353-60. PubMed ID: 9535703
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deletion of the C-terminal domain of apolipoprotein A-I impairs cell surface binding and lipid efflux in macrophage.
    Burgess JW; Frank PG; Franklin V; Liang P; McManus DC; Desforges M; Rassart E; Marcel YL
    Biochemistry; 1999 Nov; 38(44):14524-33. PubMed ID: 10545174
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deletion of central alpha-helices in human apolipoprotein A-I: effect on phospholipid association.
    Frank PG; Bergeron J; Emmanuel F; Lavigne JP; Sparks DL; Denèfle P; Rassart E; Marcel YL
    Biochemistry; 1997 Feb; 36(7):1798-806. PubMed ID: 9048564
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antibodies to the carboxyl terminus of human apolipoprotein A-I. The putative cellular binding domain of high density lipoprotein 3 and carboxyl-terminal structural homology between apolipoproteins A-I and A-II.
    Allan CM; Fidge NH; Kanellos J
    J Biol Chem; 1992 Jul; 267(19):13257-61. PubMed ID: 1377682
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A single amino acid deletion in the carboxy terminal of apolipoprotein A-I impairs lipid binding and cellular interaction.
    Huang W; Sasaki J; Matsunaga A; Han H; Li W; Koga T; Kugi M; Ando S; Arakawa K
    Arterioscler Thromb Vasc Biol; 2000 Jan; 20(1):210-6. PubMed ID: 10634820
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Site-directed mutagenesis and structure-function analysis of the human apolipoprotein A-I. Relation between lecithin-cholesterol acyltransferase activation and lipid binding.
    Minnich A; Collet X; Roghani A; Cladaras C; Hamilton RL; Fielding CJ; Zannis VI
    J Biol Chem; 1992 Aug; 267(23):16553-60. PubMed ID: 1644835
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of human apolipoprotein A-I expressed in Escherichia coli.
    Bergeron J; Frank PG; Emmanuel F; Latta M; Zhao Y; Sparks DL; Rassart E; Denèfle P; Marcel YL
    Biochim Biophys Acta; 1997 Jan; 1344(2):139-52. PubMed ID: 9030191
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural and functional properties of full-length and truncated human proapolipoprotein AI expressed in escherichia coli.
    Pyle LE; Sawyer WH; Fujiwara Y; Mitchell A; Fidge NH
    Biochemistry; 1996 Sep; 35(37):12046-52. PubMed ID: 8810909
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transfer of C-terminal residues of human apolipoprotein A-I to insect apolipophorin III creates a two-domain chimeric protein with enhanced lipid binding activity.
    Horn JVC; Ellena RA; Tran JJ; Beck WHJ; Narayanaswami V; Weers PMM
    Biochim Biophys Acta Biomembr; 2017 Aug; 1859(8):1317-1325. PubMed ID: 28434970
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Apolipoprotein A-I configuration and cell cholesterol efflux activity of discoidal lipoproteins depend on the reconstitution process.
    Cuellar LÁ; Prieto ED; Cabaleiro LV; Garda HA
    Biochim Biophys Acta; 2014 Jan; 1841(1):180-9. PubMed ID: 24201377
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The central helices of ApoA-I can promote ATP-binding cassette transporter A1 (ABCA1)-mediated lipid efflux. Amino acid residues 220-231 of the wild-type ApoA-I are required for lipid efflux in vitro and high density lipoprotein formation in vivo.
    Chroni A; Liu T; Gorshkova I; Kan HY; Uehara Y; Von Eckardstein A; Zannis VI
    J Biol Chem; 2003 Feb; 278(9):6719-30. PubMed ID: 12488454
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.