BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 7890732)

  • 1. Visual arrestin binding to rhodopsin. Diverse functional roles of positively charged residues within the phosphorylation-recognition region of arrestin.
    Gurevich VV; Benovic JL
    J Biol Chem; 1995 Mar; 270(11):6010-6. PubMed ID: 7890732
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visual arrestin interaction with rhodopsin. Sequential multisite binding ensures strict selectivity toward light-activated phosphorylated rhodopsin.
    Gurevich VV; Benovic JL
    J Biol Chem; 1993 Jun; 268(16):11628-38. PubMed ID: 8505295
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Arrestin-rhodopsin interaction. Multi-site binding delineated by peptide inhibition.
    Krupnick JG; Gurevich VV; Schepers T; Hamm HE; Benovic JL
    J Biol Chem; 1994 Feb; 269(5):3226-32. PubMed ID: 8106358
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell-free expression of visual arrestin. Truncation mutagenesis identifies multiple domains involved in rhodopsin interaction.
    Gurevich VV; Benovic JL
    J Biol Chem; 1992 Oct; 267(30):21919-23. PubMed ID: 1400502
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visual arrestin binding to rhodopsin. Intramolecular interaction between the basic N terminus and acidic C terminus of arrestin may regulate binding selectivity.
    Gurevich VV; Chen CY; Kim CM; Benovic JL
    J Biol Chem; 1994 Mar; 269(12):8721-7. PubMed ID: 8132602
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rhodopsin phosphorylation sites and their role in arrestin binding.
    Zhang L; Sports CD; Osawa S; Weiss ER
    J Biol Chem; 1997 Jun; 272(23):14762-8. PubMed ID: 9169442
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphorylated rhodopsin and heparin induce similar conformational changes in arrestin.
    Palczewski K; Pulvermüller A; Buczyłko J; Hofmann KP
    J Biol Chem; 1991 Oct; 266(28):18649-54. PubMed ID: 1917988
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arrestin interactions with G protein-coupled receptors. Direct binding studies of wild type and mutant arrestins with rhodopsin, beta 2-adrenergic, and m2 muscarinic cholinergic receptors.
    Gurevich VV; Dion SB; Onorato JJ; Ptasienski J; Kim CM; Sterne-Marr R; Hosey MM; Benovic JL
    J Biol Chem; 1995 Jan; 270(2):720-31. PubMed ID: 7822302
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of phosphorylation-recognition by visual arrestin and the transition of arrestin into a high affinity binding state.
    Gurevich VV; Benovic JL
    Mol Pharmacol; 1997 Jan; 51(1):161-9. PubMed ID: 9016359
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of the carboxyl-terminal region of arrestin in binding to phosphorylated rhodopsin.
    Palczewski K; Buczyłko J; Imami NR; McDowell JH; Hargrave PA
    J Biol Chem; 1991 Aug; 266(23):15334-9. PubMed ID: 1651326
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthetic phosphopeptide from rhodopsin sequence induces retinal arrestin binding to photoactivated unphosphorylated rhodopsin.
    Puig J; Arendt A; Tomson FL; Abdulaeva G; Miller R; Hargrave PA; McDowell JH
    FEBS Lett; 1995 Apr; 362(2):185-8. PubMed ID: 7720869
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The selectivity of visual arrestin for light-activated phosphorhodopsin is controlled by multiple nonredundant mechanisms.
    Gurevich VV
    J Biol Chem; 1998 Jun; 273(25):15501-6. PubMed ID: 9624137
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of a truncated form of arrestin isolated from bovine rod outer segments.
    Palczewski K; Buczylko J; Ohguro H; Annan RS; Carr SA; Crabb JW; Kaplan MW; Johnson RS; Walsh KA
    Protein Sci; 1994 Feb; 3(2):314-24. PubMed ID: 8003967
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A segment corresponding to amino acids Val170-Arg182 of bovine arrestin is capable of binding to phosphorylated rhodopsin.
    Kieselbach T; Irrgang KD; Rüppel H
    Eur J Biochem; 1994 Nov; 226(1):87-97. PubMed ID: 7957262
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective proteolysis of arrestin by calpain. Molecular characteristics and its effect on rhodopsin dephosphorylation.
    Azarian SM; King AJ; Hallett MA; Williams DS
    J Biol Chem; 1995 Oct; 270(41):24375-84. PubMed ID: 7592650
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Studies of ligand binding to arrestin.
    Palczewski K; Hargrave PA
    J Biol Chem; 1991 Mar; 266(7):4201-6. PubMed ID: 1999413
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arrestin with a single amino acid substitution quenches light-activated rhodopsin in a phosphorylation-independent fashion.
    Gray-Keller MP; Detwiler PB; Benovic JL; Gurevich VV
    Biochemistry; 1997 Jun; 36(23):7058-63. PubMed ID: 9188704
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An additional phosphate-binding element in arrestin molecule. Implications for the mechanism of arrestin activation.
    Vishnivetskiy SA; Schubert C; Climaco GC; Gurevich YV; Velez MG; Gurevich VV
    J Biol Chem; 2000 Dec; 275(52):41049-57. PubMed ID: 11024026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Duration and amplitude of the light-induced cGMP hydrolysis in vertebrate photoreceptors are regulated by multiple phosphorylation of rhodopsin and by arrestin binding.
    Wilden U
    Biochemistry; 1995 Jan; 34(4):1446-54. PubMed ID: 7827093
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Topographic study of arrestin using differential chemical modifications and hydrogen/deuterium exchange.
    Ohguro H; Palczewski K; Walsh KA; Johnson RS
    Protein Sci; 1994 Dec; 3(12):2428-34. PubMed ID: 7756996
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.