These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 7891075)

  • 1. Protein transport in intact and severed (anucleate) crayfish giant axons.
    Tanner SL; Storm EE; Bittner GD
    J Neurochem; 1995 Apr; 64(4):1491-501. PubMed ID: 7891075
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Maintenance and degradation of proteins in intact and severed axons: implications for the mechanisms of long-term survival of anucleate crayfish axons.
    Tanner SL; Storm EE; Bittner GD
    J Neurosci; 1995 Jan; 15(1 Pt 2):540-8. PubMed ID: 7823162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Maintenance and synthesis of proteins for an anucleate axon.
    Sheller RA; Bittner GD
    Brain Res; 1992 May; 580(1-2):68-80. PubMed ID: 1504819
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biochemical studies of trophic dependences in crayfish giant axons.
    Meyer MR; Bittner GD
    Brain Res; 1978 Mar; 143(2):213-32. PubMed ID: 75753
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrastructural studies of severed medial giant and other CNS axons in crayfish.
    Ballinger ML; Bittner GD
    Cell Tissue Res; 1980; 208(1):123-33. PubMed ID: 7388925
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of temperature on long-term survival of anucleate giant axons in crayfish and goldfish.
    Blundon JA; Sheller RA; Moehlenbruck JW; Bittner GD
    J Comp Neurol; 1990 Jul; 297(3):377-91. PubMed ID: 2398138
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Uptake and metabolism of glutamate at non-synaptic regions of crayfish central nerve fibers: implications for axon-glia signaling.
    Kane LS; Buttram JG; Urazaev AK; Lieberman EM; Grossfeld RM
    Neuroscience; 2000; 97(3):601-9. PubMed ID: 10828542
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potassium homeostasis in the nervous system of cephalopods and crustacea.
    Pichon Y; Abbott NJ; Lieberman EM; Larmet Y
    J Physiol (Paris); 1987; 82(4):346-56. PubMed ID: 3503934
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Organelle flux in intact and transected crayfish giant axons.
    Viancour TA
    Brain Res; 1990 Dec; 535(2):245-54. PubMed ID: 1705857
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long-term survival of severed crayfish giant axons is not associated with an incorporation of glial nuclei into axoplasm.
    Sheller RA; Ballinger ML; Bittner GD
    Neurosci Lett; 1991 Nov; 133(1):113-6. PubMed ID: 1724309
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regeneration of motor axons in crayfish limbs: distal stump activation followed by synaptic reformation.
    Bouton MS; Bittner GD
    Cell Tissue Res; 1981; 219(2):379-92. PubMed ID: 7273105
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Studies of axon-glial cell interactions and periaxonal K+ homeostasis--II. The effect of axonal stimulation, cholinergic agents and transport inhibitors on the resistance in series with the axon membrane.
    Hassan S; Lieberman EM
    Neuroscience; 1988 Jun; 25(3):961-9. PubMed ID: 3405437
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inter- and intra-axonal variations in morphology and metabolic activity of the crayfish medial giant axon.
    Grossfeld RM; Bittner GD; Raymond MA
    J Neurobiol; 1982 Mar; 13(2):191-7. PubMed ID: 7062023
    [No Abstract]   [Full Text] [Related]  

  • 14. Persistence of axonal transport in isolated axons of the mouse.
    Smith RS; Bisby MA
    Eur J Neurosci; 1993 Sep; 5(9):1127-35. PubMed ID: 8281318
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell-to-cell transfer of glial proteins to the squid giant axon. The glia-neuron protein trnasfer hypothesis.
    Lasek RJ; Gainer H; Barker JL
    J Cell Biol; 1977 Aug; 74(2):501-23. PubMed ID: 885913
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein transport between crayfish lateral giant axons.
    Viancour TA; Sheller RA; Bittner GD; Seshan KR
    Brain Res; 1988 Jan; 439(1-2):211-21. PubMed ID: 2451972
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasticity of non-giant flexion circuitry in chronically cut abdominal nerve cords of the crayfish, Procambarus clarkii.
    Lee MT; Wine JJ
    J Physiol; 1984 Oct; 355():661-75. PubMed ID: 6238160
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SEM comparison of severed ends of giant axons isolated from squid (Loligo pealeii) and crayfish (Procambarus clarkii).
    Eddleman CS; Bittner GD; Fishman HM
    Biol Bull; 2002 Oct; 203(2):219-20. PubMed ID: 12414587
    [No Abstract]   [Full Text] [Related]  

  • 19. Transjunctional flux of radioactive precursors across electrotonic synapses between lateral giant axons of the crayfish.
    Hermann A; Rieske E; Kreutzberg GW; Lux HD
    Brain Res; 1975 Sep; 95(1):125-31. PubMed ID: 1156860
    [No Abstract]   [Full Text] [Related]  

  • 20. Structure of allotransplanted ganglia and regenerated neuromuscular connections in crayfish.
    Krause KM; Pearce J; Velez SJ; Govind CK
    J Neurobiol; 1996 Aug; 30(4):439-53. PubMed ID: 8844508
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.