These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 789114)

  • 21. Cross resistance of Escherichia coli B. ribosomes to inhibition of the puromycin reaction by erythromycin, spiramycin and chloramphenicol.
    Rychlík I; Cerná J
    Hoppe Seylers Z Physiol Chem; 1968 Aug; 349(8):958-9. PubMed ID: 4878426
    [No Abstract]   [Full Text] [Related]  

  • 22. Antibiotic inhibitors of the bacterial ribosome.
    Weisblum B; Davies J
    Bacteriol Rev; 1968 Dec; 32(4 Pt 2):493-528. PubMed ID: 4179192
    [No Abstract]   [Full Text] [Related]  

  • 23. Synthesis of an unnatural P-N bond catalyzed with Escherichia coli ribosomes.
    Tarussova NB; Jacovleva GM; Victorova LS; Kukhanova MK; Khomutov RM
    FEBS Lett; 1981 Jul; 130(1):85-7. PubMed ID: 7026287
    [No Abstract]   [Full Text] [Related]  

  • 24. Studies on the formation of transfer ribonucleic acid-ribosome complexes. X. Phenylalanyl-oligonucleotide binding to ribosomes and the mechanism of chloramphenicol action.
    Pestka S
    Biochem Biophys Res Commun; 1969 Aug; 36(4):589-95. PubMed ID: 4897408
    [No Abstract]   [Full Text] [Related]  

  • 25. Ribosomes of rat liver catalyze 'minimal' donor reaction.
    Kukhanova MK; Krayevsky AA; Gottikh BP; Stahl J
    FEBS Lett; 1979 May; 101(2):225-8. PubMed ID: 376347
    [No Abstract]   [Full Text] [Related]  

  • 26. Cooperative binding of 3'-fragments of transfer ribonucleic acid to the peptidyltransferase center of Escherichia coli ribosomes.
    Ulbrich B; Mertens G; Nierhaus KH
    Arch Biochem Biophys; 1978 Sep; 190(1):149-54. PubMed ID: 360993
    [No Abstract]   [Full Text] [Related]  

  • 27. The comparative study on the effects of chloramphenicol, erythromycin and lincomycin on polylysine synthesis in an Escherichia coli cell-free system.
    Teraoka H; Tanaka K; Tamaki M
    Biochim Biophys Acta; 1969 Feb; 174(2):776-8. PubMed ID: 4887382
    [No Abstract]   [Full Text] [Related]  

  • 28. Lincomycin, an inhibitor of aminoacyl sRNA binding to ribosomes.
    Chang FN; Sih CJ; Weisblum B
    Proc Natl Acad Sci U S A; 1966 Feb; 55(2):431-8. PubMed ID: 5328728
    [No Abstract]   [Full Text] [Related]  

  • 29. Peptidyl-transferase activity of Escherichia coli ribosomes digested by ribonuclease T 1 .
    Cerná J; Rychlík I; Jonák J
    Eur J Biochem; 1973 May; 34(3):551-6. PubMed ID: 4123724
    [No Abstract]   [Full Text] [Related]  

  • 30. Release of (oligo) peptidyl-tRNA from ribosomes by erythromycin A.
    Otaka T; Kaji A
    Proc Natl Acad Sci U S A; 1975 Jul; 72(7):2649-52. PubMed ID: 1101261
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Inhibition by sparsomycin and other antibiotics of the puromycin-induced release of polypeptide from ribosomes.
    Goldberg IH; Mitsugi K
    Biochemistry; 1967 Feb; 6(2):383-91. PubMed ID: 4860147
    [No Abstract]   [Full Text] [Related]  

  • 32. Studies on the kinetics of peptidyl transfer RNA translocase from rat liver.
    Siler J; Moldave K
    Biochim Biophys Acta; 1969 Nov; 195(1):138-44. PubMed ID: 4901829
    [No Abstract]   [Full Text] [Related]  

  • 33. Hydrolysis of fMet-tRNA by peptidyl transferase.
    Caskey CT; Beaudet AL; Scolnick EM; Rosman M
    Proc Natl Acad Sci U S A; 1971 Dec; 68(12):3163-7. PubMed ID: 4943558
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The photochemical inactivation of peptidyl transferase activity.
    Wan KK; Zahid ND; Baxter RM
    Eur J Biochem; 1975 Oct; 58(2):397-402. PubMed ID: 241639
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Antibiotic action in protein synthesis.
    Vazquez D
    Basic Life Sci; 1973; 1():339-59. PubMed ID: 4359218
    [No Abstract]   [Full Text] [Related]  

  • 36. Ribosome-catalyzed formation of an abnormal peptide analogue.
    Roesser JR; Chorghade MS; Hecht SM
    Biochemistry; 1986 Oct; 25(21):6361-5. PubMed ID: 3539188
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The extension of polyphenylalanine and polylysine peptides on Escherichia coli ribosomes.
    Hardesty B; Picking WD; Odom OW
    Biochim Biophys Acta; 1990 Aug; 1050(1-3):197-202. PubMed ID: 2207144
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Substrate- and antibiotic-binding sites at the peptidyl-transferase centre of Escherichia coli ribosomes. Studies on the chloramphenicol. lincomycin and erythromycin sites.
    Fernandez-Munoz R; Monro RE; Torres-Pinedo R; Vazquez D
    Eur J Biochem; 1971 Nov; 23(1):185-93. PubMed ID: 4942548
    [No Abstract]   [Full Text] [Related]  

  • 39. Modification of Escherichia coli ribosomes: in vitro termination is less dependent on histidine residues at the peptidyl transferase centre when ribosomes lack protein L11.
    Sumpter VG; Trotman CN; Tate WP
    Biochem Int; 1985 Feb; 10(2):137-46. PubMed ID: 3888222
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Translational characteristics of ribosomes and coding properties of transfer RNA in the mutant of bacterium paracoli with the increased GC content of DNA.
    Gause GG; Grünberger D
    Biochim Biophys Acta; 1968 Sep; 166(2):538-46. PubMed ID: 5680608
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.