These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 7891451)
1. Mathematical treatment of the kinetics of binding protein dependent transport systems reveals that both the substrate loaded and unloaded binding proteins interact with the membrane components. Bohl E; Shuman HA; Boos W J Theor Biol; 1995 Jan; 172(1):83-94. PubMed ID: 7891451 [TBL] [Abstract][Full Text] [Related]
2. The inhibition of maltose transport by the unliganded form of the maltose-binding protein of Escherichia coli: experimental findings and mathematical treatment. Merino G; Boos W; Shuman HA; Bohl E J Theor Biol; 1995 Nov; 177(2):171-9. PubMed ID: 8558904 [TBL] [Abstract][Full Text] [Related]
3. Simple models for the analysis of binding protein-dependent transport systems. Shilton BH; Mowbray SL Protein Sci; 1995 Jul; 4(7):1346-55. PubMed ID: 7670377 [TBL] [Abstract][Full Text] [Related]
4. Upflow anaerobic sludge blanket reactor--a review. Bal AS; Dhagat NN Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675 [TBL] [Abstract][Full Text] [Related]
5. Sequence relationships between integral inner membrane proteins of binding protein-dependent transport systems: evolution by recurrent gene duplications. Saurin W; Dassa E Protein Sci; 1994 Feb; 3(2):325-44. PubMed ID: 8003968 [TBL] [Abstract][Full Text] [Related]
6. A proton nuclear magnetic resonance investigation of histidine-binding protein J of Salmonella typhimurium: a model for transport of L-histidine across cytoplasmic membrane. Ho C; Giza Y; Takahashi S; Ugen KE; Cottam PF; Dowd SR J Supramol Struct; 1980; 13(2):131-45. PubMed ID: 7017276 [TBL] [Abstract][Full Text] [Related]
7. Penicillin-binding protein 2a from methicillin-resistant Staphylococcus aureus: kinetic characterization of its interactions with beta-lactams using electrospray mass spectrometry. Lu WP; Sun Y; Bauer MD; Paule S; Koenigs PM; Kraft WG Biochemistry; 1999 May; 38(20):6537-46. PubMed ID: 10350472 [TBL] [Abstract][Full Text] [Related]
8. DnaJ dramatically stimulates ATP hydrolysis by DnaK: insight into targeting of Hsp70 proteins to polypeptide substrates. Russell R; Wali Karzai A; Mehl AF; McMacken R Biochemistry; 1999 Mar; 38(13):4165-76. PubMed ID: 10194333 [TBL] [Abstract][Full Text] [Related]
9. In vivo synthesis of the periplasmic domain of TonB inhibits transport through the FecA and FhuA iron siderophore transporters of Escherichia coli. Howard SP; Herrmann C; Stratilo CW; Braun V J Bacteriol; 2001 Oct; 183(20):5885-95. PubMed ID: 11566987 [TBL] [Abstract][Full Text] [Related]
10. Polyamine transport in bacteria and yeast. Igarashi K; Kashiwagi K Biochem J; 1999 Dec; 344 Pt 3(Pt 3):633-42. PubMed ID: 10585849 [TBL] [Abstract][Full Text] [Related]
11. Quantitative analysis of binding protein-mediated ABC transport systems. Bohl E; Boos W J Theor Biol; 1997 May; 186(1):65-74. PubMed ID: 9176638 [TBL] [Abstract][Full Text] [Related]
12. The HlyB/HlyD-dependent secretion of toxins by gram-negative bacteria. Koronakis V; Stanley P; Koronakis E; Hughes C FEMS Microbiol Immunol; 1992 Sep; 5(1-3):45-53. PubMed ID: 1419114 [TBL] [Abstract][Full Text] [Related]
13. Periplasmic binding protein-dependent transport systems: the membrane-associated components. Higgins CF; Gallagher MP; Hyde SC; Mimmack ML; Pearce SR Philos Trans R Soc Lond B Biol Sci; 1990 Jan; 326(1236):353-64; discussion 364-5. PubMed ID: 1970642 [TBL] [Abstract][Full Text] [Related]
14. Bacterial periplasmic permeases belong to a family of transport proteins operating from Escherichia coli to human: Traffic ATPases. Ames GF; Mimura CS; Shyamala V FEMS Microbiol Rev; 1990 Aug; 6(4):429-46. PubMed ID: 2147378 [TBL] [Abstract][Full Text] [Related]
15. Maltose transport in membrane vesicles of Escherichia coli is linked to ATP hydrolysis. Dean DA; Davidson AL; Nikaido H Proc Natl Acad Sci U S A; 1989 Dec; 86(23):9134-8. PubMed ID: 2531894 [TBL] [Abstract][Full Text] [Related]
16. Mathematical treatment of transport data of bacterial transport systems to estimate limitation in diffusion through the outer membrane. Tralau C; Greller G; Pajatsch M; Boos W; Bohl E J Theor Biol; 2000 Nov; 207(1):1-14. PubMed ID: 11027475 [TBL] [Abstract][Full Text] [Related]
17. Kinetics of transport systems dependent on periplasmic binding proteins. Krupka RM Biochim Biophys Acta; 1992 Sep; 1110(1):1-10. PubMed ID: 1390828 [TBL] [Abstract][Full Text] [Related]
18. Periplasmic binding protein dependent transport system for maltose and maltodextrins: some recent studies. Saurin W; Francoz E; Martineau P; Charbit A; Dassa E; Duplay P; Gilson E; Molla A; Ronco G; Szmelcman S FEMS Microbiol Rev; 1989 Jun; 5(1-2):53-60. PubMed ID: 2699251 [No Abstract] [Full Text] [Related]
19. Na+-coupled alanine transport in LLC-PK1 cells: the relationship between the Km for Na+ at low [Alanine] and potential dependence for the system. Wilson JJ; Randles J; Kimmich GA J Membr Biol; 1998 Oct; 165(3):275-82. PubMed ID: 9767681 [TBL] [Abstract][Full Text] [Related]
20. Testing models for transport systems dependent on periplasmic binding proteins. Krupka RM Biochim Biophys Acta; 1992 Sep; 1110(1):11-9. PubMed ID: 1390830 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]