These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 7891542)

  • 1. Proton transverse nuclear magnetic relaxation in oxidized blood: a numerical approach.
    Gillis P; Petö S; Moiny F; Mispelter J; Cuenod CA
    Magn Reson Med; 1995 Jan; 33(1):93-100. PubMed ID: 7891542
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New simulation approach using classical formalism to water nuclear magnetic relaxation dispersions in presence of superparamagnetic particles used as MRI contrast agents.
    Vuong QL; Gossuin Y; Gillis P; Delangre S
    J Chem Phys; 2012 Sep; 137(11):114505. PubMed ID: 22998269
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human whole blood
    Wilson GJ; Springer CS; Bastawrous S; Maki JH
    Magn Reson Med; 2017 May; 77(5):2015-2027. PubMed ID: 27297589
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The magnetic properties and water dynamics of the red blood cell: a study by proton-NMR lineshape analysis.
    Gasparovic C; Matwiyoff NA
    Magn Reson Med; 1992 Aug; 26(2):274-99. PubMed ID: 1325024
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NMR relaxation times of blood: dependence on field strength, oxidation state, and cell integrity.
    Gomori JM; Grossman RI; Yu-Ip C; Asakura T
    J Comput Assist Tomogr; 1987; 11(4):684-90. PubMed ID: 3597895
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monte Carlo simulation and theory of proton NMR transverse relaxation induced by aggregation of magnetic particles used as MRI contrast agents.
    Vuong QL; Gillis P; Gossuin Y
    J Magn Reson; 2011 Sep; 212(1):139-48. PubMed ID: 21807538
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The line shapes of the water proton resonances of red blood cells containing carbonyl hemoglobin, deoxyhemoglobin, and methemoglobin: implications for the interpretation of proton MRI at fields of 1.5 T and below.
    Matwiyoff NA; Gasparovic C; Mazurchuk R; Matwiyoff G
    Magn Reson Imaging; 1990; 8(3):295-301. PubMed ID: 2366641
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the transverse relaxation rate enhancement induced by diffusion of spins through inhomogeneous fields.
    Hardy P; Henkelman RM
    Magn Reson Med; 1991 Feb; 17(2):348-56. PubMed ID: 2062209
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NMR relaxation rates and blood oxygenation level.
    Meyer ME; Yu O; Eclancher B; Grucker D; Chambron J
    Magn Reson Med; 1995 Aug; 34(2):234-41. PubMed ID: 7476083
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnetic resonance relaxation induced by superparamagnetic particles used as contrast agents in magnetic resonance imaging: a theoretical review.
    Vuong QL; Gillis P; Roch A; Gossuin Y
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2017 Nov; 9(6):. PubMed ID: 28398013
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determinants of proton relaxation rates in tissue.
    Koenig SH; Brown RD
    Magn Reson Med; 1984 Dec; 1(4):437-49. PubMed ID: 6100933
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxygenation dependence of the transverse relaxation time of water protons in whole blood at high field.
    Thulborn KR; Waterton JC; Matthews PM; Radda GK
    Biochim Biophys Acta; 1982 Feb; 714(2):265-70. PubMed ID: 6275909
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transverse relaxation (1/T2) of solvent protons induced by magnetized spheres and its relevance to contrast enhancement in MRI.
    Koenig SH; Gillis P
    Invest Radiol; 1988 Sep; 23 Suppl 1():S224-8. PubMed ID: 3198349
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transverse relaxation rate enhancement caused by magnetic particulates.
    Hardy PA; Henkelman RM
    Magn Reson Imaging; 1989; 7(3):265-75. PubMed ID: 2548049
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamics of paramagnetic agents by off-resonance rotating frame technique.
    Zhang H; Xie Y
    J Magn Reson; 2006 Dec; 183(2):213-27. PubMed ID: 16979920
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnetically coupled paramagnetic relaxation agents.
    Lester CC; Bryant RG
    Magn Reson Med; 1992 Apr; 24(2):236-42. PubMed ID: 1314929
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetic resonance imaging of stationary blood: a review.
    Brooks RA; Di Chiro G
    Med Phys; 1987; 14(6):903-13. PubMed ID: 3696078
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relaxation of solvent protons by paramagnetic ions and its dependence on magnetic field and chemical environment: implications for NMR imaging.
    Koenig SH; Brown RD
    Magn Reson Med; 1984 Dec; 1(4):478-95. PubMed ID: 6571571
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Four-pool modeling of proton exchange processes in biological systems in the presence of MRI-paramagnetic chemical exchange saturation transfer (PARACEST) agents.
    Li AX; Hudson RH; Barrett JW; Jones CK; Pasternak SH; Bartha R
    Magn Reson Med; 2008 Nov; 60(5):1197-206. PubMed ID: 18958857
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the strong field dependence and nonlinear response to gadolinium contrast agent of proton transverse relaxation rates in dairy cream.
    Mulkern RV; Hung YP; Ababneh Z; Maier SE; Packard AB; Uluer MC; Kacher DF; Gambarota G; Voss S
    Magn Reson Imaging; 2005 Jul; 23(6):757-64. PubMed ID: 16198831
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.