These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 7891631)
1. Materials for thermoluminescent dose detectors and photon radiation energy detectors intended for intercomparison procedures of radiation therapy units. Kalmykov LZ Med Phys; 1994 Nov; 21(11):1715-9. PubMed ID: 7891631 [TBL] [Abstract][Full Text] [Related]
2. Quality control of X-ray orthovoltage therapy units with a dual TL system. Zaránd P; Polgár I; Katona E Acta Biochim Biophys Hung; 1989; 24(4):383-92. PubMed ID: 2487013 [TBL] [Abstract][Full Text] [Related]
3. On the relationship between dose-, energy- and LET-response of thermoluminescent detectors. Olko P; Bilski P; El-Faramawy NA; Göksu HY; Kim JL; Kopec R; Waligórski MP Radiat Prot Dosimetry; 2006; 119(1-4):15-22. PubMed ID: 16644968 [TBL] [Abstract][Full Text] [Related]
4. Dose response of various radiation detectors to synchrotron radiation. Kron T; Duggan L; Smith T; Rosenfeld A; Butson M; Kaplan G; Howlett S; Hyodo K Phys Med Biol; 1998 Nov; 43(11):3235-59. PubMed ID: 9832014 [TBL] [Abstract][Full Text] [Related]
5. Development of a TL detector for neutron measurement by CaSO4:Dy phosphors. Yang JS; Kim JL; Kim DY; Chang SY Radiat Prot Dosimetry; 2004; 110(1-4):301-4. PubMed ID: 15353663 [TBL] [Abstract][Full Text] [Related]
6. Energy responses of the LiF series TL pellets to high-energy photons in the energy range from 1.25 to 21 MV. Kim JL; Lee JI; Ji YH; Kim BH; Kim JS; Chang SY Radiat Prot Dosimetry; 2006; 119(1-4):353-6. PubMed ID: 16644960 [TBL] [Abstract][Full Text] [Related]
7. Synchrotron radiation in the study of the variation of dose response in thermoluminescence dosimeters with radiation energy. Kron T; Smith A; Hyodo K Australas Phys Eng Sci Med; 1996 Dec; 19(4):225-36. PubMed ID: 9060209 [TBL] [Abstract][Full Text] [Related]
8. Assessment of the mean glandular dose using LiF:Mg,Ti, LiF:Mg,Cu,P, Li2B4O7:Mn and Li2B4O7:Cu TL detectors in mammography radiation fields. Fartaria MJ; Reis C; Pereira J; Pereira MF; Cardoso JV; Santos LM; Oliveira C; Holovey V; Pascoal A; Alves JG Phys Med Biol; 2016 Sep; 61(17):6384-99. PubMed ID: 27499104 [TBL] [Abstract][Full Text] [Related]
9. Application of different TL detectors for the photon dosimetry in mixed radiation fields used for BNCT. Burgkhardt B; Bilski P; Budzanowski M; Böttger R; Eberhardt K; Hampel G; Olko P; Straubing A Radiat Prot Dosimetry; 2006; 120(1-4):83-6. PubMed ID: 16644976 [TBL] [Abstract][Full Text] [Related]
10. Response of LiF:Mg,Ti thermoluminescent dosimeters at photon energies relevant to the dosimetry of brachytherapy (<1 MeV). Tedgren AC; Hedman A; Grindborg JE; Carlsson GA Med Phys; 2011 Oct; 38(10):5539-50. PubMed ID: 21992372 [TBL] [Abstract][Full Text] [Related]
11. The use of precision thermoluminescence dosimetry for intercomparison of absorbed dose. Rossiter MJ Phys Med Biol; 1975 Sep; 20(3):735-46. PubMed ID: 1187775 [TBL] [Abstract][Full Text] [Related]
12. Influence of phantom materials on the energy dependence of LiF:Mg,Ti thermoluminescent dosimeters exposed to 20-300 kV narrow x-ray spectra, 137Cs and 60Co photons. Massillon-J L G; Cabrera-Santiago A; Minniti R; O'Brien M; Soares CG Phys Med Biol; 2014 Aug; 59(15):4149-66. PubMed ID: 25004055 [TBL] [Abstract][Full Text] [Related]
13. Thermoluminescent characteristics of LiF:Mg, Cu, P and CaSO4:Dy for low dose measurement. Del Sol Fernández S; García-Salcedo R; Mendoza JG; Sánchez-Guzmán D; Rodríguez GR; Gaona E; Montalvo TR Appl Radiat Isot; 2016 May; 111():50-5. PubMed ID: 26922395 [TBL] [Abstract][Full Text] [Related]
14. Whole-body dose and energy measurements in radiotherapy by a combination of LiF:Mg,Cu,P and LiF:Mg,Ti. Hauri P; Schneider U Z Med Phys; 2018 Apr; 28(2):96-109. PubMed ID: 28807441 [TBL] [Abstract][Full Text] [Related]
15. Thermoluminescent dosimeters for low dose X-ray measurements. Del Sol Fernández S; García-Salcedo R; Sánchez-Guzmán D; Ramírez-Rodríguez G; Gaona E; de León-Alfaro MA; Rivera-Montalvo T Appl Radiat Isot; 2016 Jan; 107():340-345. PubMed ID: 26609683 [TBL] [Abstract][Full Text] [Related]
16. Energy dependence of new thermoluminescent detectors in terms of HP(10) values. Miljanić S; Knezević Z; Stuhec M; Ranogajec-Komor M; Krpan K; Vekić B Radiat Prot Dosimetry; 2003; 106(3):253-6. PubMed ID: 14690327 [TBL] [Abstract][Full Text] [Related]
17. [Clinical dosimetric properties of the TLD-300 thermoluminescent dosimetry detector and its use for measuring spatial dose distribution in patient radiation planning]. Olthoff-Münter K; Baumhoer W Strahlentherapie; 1985 Feb; 161(2):98-101. PubMed ID: 3975947 [TBL] [Abstract][Full Text] [Related]
18. Postal intercomparison of absorbed dose for high energy x rays with thermoluminescence dosimeters. Bjärngard BE; Kase KR; Rudén BI; Biggs PJ; Boyer AL; Johansson KA Med Phys; 1980; 7(5):560-5. PubMed ID: 6775180 [TBL] [Abstract][Full Text] [Related]
19. Experimental determination of the photon-energy dependent dose-to-water response of TLD600 and TLD700 (LiF:Mg,Ti) thermoluminescence detectors. Schwahofer A; Feist H; Georg H; Häring P; Schlegel W Z Med Phys; 2017 Mar; 27(1):13-20. PubMed ID: 26972816 [TBL] [Abstract][Full Text] [Related]
20. Comparative study of LiF:Mg,Cu,Na,Si and Li2B4O7:Cu,Ag,P TL detectors. Miljanić S; Ranogajec-Komor M; Knezević Z; Stuhec M; Prokić M Radiat Prot Dosimetry; 2006; 119(1-4):191-6. PubMed ID: 16709712 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]