These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 7891640)

  • 1. Use of capillary optics as a beam intensifier for a Compton x-ray source.
    Tompkins PA; Abreu CC; Carroll FE; Xiao QF; MacDonald CA
    Med Phys; 1994 Nov; 21(11):1777-84. PubMed ID: 7891640
    [TBL] [Abstract][Full Text] [Related]  

  • 2. X-ray optics for better diagnostic imaging.
    MacDonald CA; Gibson WM; Peppler WW
    Technol Cancer Res Treat; 2002 Apr; 1(2):111-7. PubMed ID: 12622517
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurements of capillary x-ray optics with potential for use in mammographic imaging.
    Abreu CC; Kruger DG; MacDonald CA; Mistretta CA; Peppler WW; Xiao QF
    Med Phys; 1995 Nov; 22(11 Pt 1):1793-801. PubMed ID: 8587534
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Near-monochromatic X-ray beams produced by the free electron laser and Compton backscatter.
    Carroll FE; Waters JW; Price RR; Brau CA; Roos CF; Tolk NH; Pickens DR; Stephens WH
    Invest Radiol; 1990 May; 25(5):465-71. PubMed ID: 2345075
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monochromatic X-ray imaging using a combination of doubly curved crystal and polycapillary X-ray lens.
    Sun T; MacDonald CA
    J Xray Sci Technol; 2015; 23(2):141-6. PubMed ID: 25882727
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Applications and measurements of polycapillary x-ray optics.
    Macdonald CA
    J Xray Sci Technol; 1996 Jan; 6(1):32-47. PubMed ID: 21307511
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Slit x-ray beam primary dose profiles determined by analytical transport of Compton recoil electrons.
    van't Veld AA; van Luijk P; Praamstra F; van der Hulst PC
    Med Phys; 2000 May; 27(5):923-34. PubMed ID: 10841395
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Soft-x-ray hollow fiber optics with inner metal coating.
    Matsuura Y; Oyama T; Miyagi M
    Appl Opt; 2005 Oct; 44(29):6193-6. PubMed ID: 16237934
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Scintillating fiber optic screens: a comparison of MTF, light conversion efficiency, and emission angle with Gd2O2S:Tb screens.
    Yu T; Sabol JM; Seibert JA; Boone JM
    Med Phys; 1997 Feb; 24(2):279-85. PubMed ID: 9048369
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Beam collimation with polycapillary x-ray optics for high contrast high resolution monochromatic imaging.
    Sugiro FR; Li D; MacDonald CA
    Med Phys; 2004 Dec; 31(12):3288-97. PubMed ID: 15651611
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparison of mono- and poly-energetic x-ray beam performance for radiographic and fluoroscopic imaging.
    Boone JM; Seibert JA
    Med Phys; 1994 Dec; 21(12):1853-63. PubMed ID: 7700192
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of graphite mosaic monochromator crystals for x-ray transport.
    Tompkins PA
    J Xray Sci Technol; 1994 Jan; 4(4):301-11. PubMed ID: 21307467
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Large-distance refocusing of a submicrometre beam from an X-ray waveguide.
    Lagomarsino S; Bukreeva I; Mocella V; Surpi A; Bigault T; Cedola A
    J Synchrotron Radiat; 2006 Jan; 13(Pt 1):85-7. PubMed ID: 16371712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. BriXS, a new X-ray inverse Compton source for medical applications.
    Cardarelli P; Bacci A; Calandrino R; Canella F; Castriconi R; Cialdi S; Del Vecchio A; di Franco F; Drebot I; Gambaccini M; Giannotti D; Loria A; Mettivier G; Paternò G; Petrillo V; Rossetti Conti M; Russo P; Sarno A; Suerra E; Taibi A; Serafini L
    Phys Med; 2020 Sep; 77():127-137. PubMed ID: 32829101
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Curved crystal x-ray optics for monochromatic imaging with a clinical source.
    Bingölbali A; MacDonald CA
    Med Phys; 2009 Apr; 36(4):1176-83. PubMed ID: 19472623
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Laser-based microfocused x-ray source for mammography: feasibility study.
    Krol A; Ikhlef A; Kieffer JC; Bassano DA; Chamberlain CC; Jiang Z; Pépin H; Prasad SC
    Med Phys; 1997 May; 24(5):725-32. PubMed ID: 9167163
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficiency of integrated waveguide probes for the detection of light backscattered from weakly scattering media.
    Ismail N; Civitci F; Wörhoff K; de Ridder RM; Pollnau M; Driessen A
    Appl Opt; 2011 Feb; 50(6):935-42. PubMed ID: 21343974
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Liquid filled microstructured optical fiber for x-ray detection.
    DeHaven SL; Albin S; Kelliher WC
    Opt Express; 2010 Jun; 18(13):13754-60. PubMed ID: 20588508
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of signal propagation in optically coupled detectors for digital mammography: II. Lens and fibre optics.
    Maidment AD; Yaffe MJ
    Phys Med Biol; 1996 Mar; 41(3):475-93. PubMed ID: 8778827
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Imaging characteristics of x-ray capillary optics in digital mammography.
    Kruger DG; Abreu CC; Hendee EG; Kocharian A; Peppler WW; Mistretta CA; MacDonald CA
    Med Phys; 1996 Feb; 23(2):187-96. PubMed ID: 8668099
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.