These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 7891640)

  • 21. Study on X-ray enhancement in Laser-Compton scattering for auger therapy.
    Koshiba Y; Morita R; Yamashita K; Washio M; Sakaue K; Higashiguchi T; Urakawa J
    Int J Radiat Biol; 2023; 99(1):77-81. PubMed ID: 32835574
    [TBL] [Abstract][Full Text] [Related]  

  • 22. MANTIS: combined x-ray, electron and optical Monte Carlo simulations of indirect radiation imaging systems.
    Badano A; Sempau J
    Phys Med Biol; 2006 Mar; 51(6):1545-61. PubMed ID: 16510962
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparison of vessel contrast measured with a scanning-beam digital x-ray system and an image intensifier/television system.
    Speidel MA; Wilfley BP; Heanue JA; Betts TD; Van Lysel MS
    Med Phys; 2001 Feb; 28(2):232-40. PubMed ID: 11243348
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Feasibility of a large area x-ray sensitive vidicon for medical fluoroscopy: signal and noise factors.
    Luhta R; Rowlands JA
    Med Phys; 1997 May; 24(5):609-20. PubMed ID: 9167153
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Single-bounce monocapillaries for focusing synchrotron radiation: modeling, measurements and theoretical limits.
    Huang R; Bilderback DH
    J Synchrotron Radiat; 2006 Jan; 13(Pt 1):74-84. PubMed ID: 16371711
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Properties of polycapillary optics dedicated to low-energy parallel-beam wavelength-dispersive spectrometers for synchrotron-based X-ray fluorescence study.
    Jagodziński P; Pajek M; Banaś D; Kubala-Kukuś A; Szlachetko J; Cotte M; Salomé M
    Opt Express; 2021 Aug; 29(17):27193-27211. PubMed ID: 34615140
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Operation of photon diagnostic imagers for beam commissioning at the European XFEL.
    Koch A; Risch J; Freund W; Maltezopoulos T; Planas M; Grünert J
    J Synchrotron Radiat; 2019 Sep; 26(Pt 5):1489-1495. PubMed ID: 31490136
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Computer simulation of broad-beam and narrow-beam attenuation in lead for diagnostic x-ray energies.
    McLean D
    Med Phys; 1993; 20(5):1549-54. PubMed ID: 8289739
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Feasibility of a large area x-ray sensitive vidicon for medical fluoroscopy: resolution and lag factors.
    Luhta R; Rowlands JA
    Med Phys; 1997 May; 24(5):621-31. PubMed ID: 9167154
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Correction of light refraction and reflection in medical transmission optical tomography].
    Tereshchenko SA; Potapov DA
    Med Tekh; 2002; (3):3-7. PubMed ID: 12224249
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Producing parallel x rays with a bent-crystal monochromator and an x-ray tube.
    Zhong Z; Dilmanian FA; Bacarian T; Zhong N; Chapman D; Ren B; Wu XY; Weinmann HJ
    Med Phys; 2001 Sep; 28(9):1931-6. PubMed ID: 11585224
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Extrafocal radiation: a unified approach to the prediction of beam penumbra and output factors for megavoltage x-ray beams.
    Sharpe MB; Jaffray DA; Battista JJ; Munro P
    Med Phys; 1995 Dec; 22(12):2065-74. PubMed ID: 8746712
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Monte Carlo study of x-ray fluorescence in x-ray detectors.
    Boone JM; Seibert JA; Sabol JM; Tecotzky M
    Med Phys; 1999 Jun; 26(6):905-16. PubMed ID: 10436891
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Confocal total reflection X-ray fluorescence technology based on an elliptical monocapillary and a parallel polycapillary X-ray optics.
    Zhu Y; Wang Y; Sun T; Sun X; Zhang X; Liu Z; Li Y; Zhang F
    Appl Radiat Isot; 2018 Jul; 137():172-176. PubMed ID: 29653299
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Energy-dispersive small-angle X-ray scattering with cone collimation using X-ray capillary optics.
    Li F; Liu Z; Sun T
    Rev Sci Instrum; 2016 Sep; 87(9):093106. PubMed ID: 27782614
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The x-ray time of flight method for investigation of ghosting in amorphous selenium-based flat panel medical x-ray imagers.
    Rau AW; Bakueva L; Rowlands JA
    Med Phys; 2005 Oct; 32(10):3160-77. PubMed ID: 16279070
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ronchi test for characterization of nanofocusing optics at a hard x-ray free-electron laser.
    Nilsson D; Uhlén F; Holmberg A; Hertz HM; Schropp A; Patommel J; Hoppe R; Seiboth F; Meier V; Schroer CG; Galtier E; Nagler B; Lee HJ; Vogt U
    Opt Lett; 2012 Dec; 37(24):5046-8. PubMed ID: 23258000
    [TBL] [Abstract][Full Text] [Related]  

  • 38. MeV-energy x rays from inverse compton scattering with laser-wakefield accelerated electrons.
    Chen S; Powers ND; Ghebregziabher I; Maharjan CM; Liu C; Golovin G; Banerjee S; Zhang J; Cunningham N; Moorti A; Clarke S; Pozzi S; Umstadter DP
    Phys Rev Lett; 2013 Apr; 110(15):155003. PubMed ID: 25167278
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Deducing the electron-beam diameter in a laser-plasma accelerator using x-ray betatron radiation.
    Schnell M; Sävert A; Landgraf B; Reuter M; Nicolai M; Jäckel O; Peth C; Thiele T; Jansen O; Pukhov A; Willi O; Kaluza MC; Spielmann C
    Phys Rev Lett; 2012 Feb; 108(7):075001. PubMed ID: 22401215
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Laboratory-based micro-X-ray fluorescence setup using a von Hamos crystal spectrometer and a focused beam X-ray tube.
    Kayser Y; Błachucki W; Dousse JC; Hoszowska J; Neff M; Romano V
    Rev Sci Instrum; 2014 Apr; 85(4):043101. PubMed ID: 24784587
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.