These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 7891643)

  • 1. Dual-energy x-ray imaging technique for in vitro tissue composition measurement.
    Moreau M; Holdsworth DW; Fenster A
    Med Phys; 1994 Nov; 21(11):1807-15. PubMed ID: 7891643
    [TBL] [Abstract][Full Text] [Related]  

  • 2. X-ray imaging technique for in vitro tissue composition measurements using saline/iodine displacement: experimental verification.
    Moreau M; Dunmore-Buyze PJ; Holdsworth DW; Fenster A
    Med Phys; 1997 Mar; 24(3):351-60. PubMed ID: 9089586
    [TBL] [Abstract][Full Text] [Related]  

  • 3. X-ray imaging technique for in vitro tissue composition measurements using saline/iodine displacement: technique optimization.
    Moreau M; Holdsworth DW; Fenster A
    Med Phys; 1997 Jan; 24(1):37-49. PubMed ID: 9029540
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Feasibility of real time dual-energy imaging based on a flat panel detector for coronary artery calcium quantification.
    Xu T; Ducote JL; Wong JT; Molloi S
    Med Phys; 2006 Jun; 33(6):1612-22. PubMed ID: 16872069
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual-energy digital mammography: calibration and inverse-mapping techniques to estimate calcification thickness and glandular-tissue ratio.
    Kappadath SC; Shaw CC
    Med Phys; 2003 Jun; 30(6):1110-7. PubMed ID: 12852535
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficacy of fixed filtration for rapid kVp-switching dual energy x-ray systems.
    Yao Y; Wang AS; Pelc NJ
    Med Phys; 2014 Mar; 41(3):031914. PubMed ID: 24593732
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A DPA technique for simultaneously measuring bone, soft tissue, and fat content.
    Goodsitt MM; Murano R; Richardson ML
    Invest Radiol; 1989 Oct; 24(10):762-7. PubMed ID: 2793388
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantification techniques for dual-energy cardiac imaging.
    Molloi SY; Mistretta CA
    Med Phys; 1989; 16(2):209-17. PubMed ID: 2654596
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual-energy bone densitometry using a single 100 ns x-ray pulse.
    Seely JF; Boyer CN; Holland GE
    Med Phys; 1998 Oct; 25(10):2027-36. PubMed ID: 9800712
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantification of breast density with dual energy mammography: an experimental feasibility study.
    Ducote JL; Molloi S
    Med Phys; 2010 Feb; 37(2):793-801. PubMed ID: 20229889
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A digital-radiographic technique for in vitro tissue thickness measurement using iodine displacement.
    Holdsworth DW; Dunmore PJ; Roach MR; Fenster A
    Med Phys; 1992; 19(3):545-54. PubMed ID: 1508088
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bone mineral measurement of phalanges: comparison of radiographic absorptiometry and area dual X-ray absorptiometry.
    Gulam M; Thornton MM; Hodsman AB; Holdsworth DW
    Radiology; 2000 Aug; 216(2):586-91. PubMed ID: 10924590
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface extraction from multi-material components for metrology using dual energy CT.
    Heinzl C; Kastner J; Gröller E
    IEEE Trans Vis Comput Graph; 2007; 13(6):1520-7. PubMed ID: 17968105
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dual-Energy X-Ray Absorptiometry for Measurement of Phalangeal Bone Mineral Density on a Slot-Scanning Digital Radiography System.
    Dendere R; Potgieter JH; Steiner S; Whiley SP; Douglas TS
    IEEE Trans Biomed Eng; 2015 Dec; 62(12):2850-9. PubMed ID: 26099139
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Implementation of dual- and triple-energy cone-beam micro-CT for postreconstruction material decomposition.
    Granton PV; Pollmann SI; Ford NL; Drangova M; Holdsworth DW
    Med Phys; 2008 Nov; 35(11):5030-42. PubMed ID: 19070237
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Density measurements of dentin by dual-energy radiography.
    Heaven TJ; White SL; Gauntt DM; Weems RA; Litaker MS
    Oral Surg Oral Med Oral Pathol Oral Radiol Endod; 2010 Apr; 109(4):604-14. PubMed ID: 20188606
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid small-animal dual-energy X-ray absorptiometry using digital radiography.
    Holdsworth DW; Thornton MM; Drost D; Watson PH; Fraher LJ; Hodsman AB
    J Bone Miner Res; 2000 Dec; 15(12):2451-7. PubMed ID: 11127209
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of image acquisition techniques for dual-energy imaging of the chest.
    Shkumat NA; Siewerdsen JH; Dhanantwari AC; Williams DB; Richard S; Paul NS; Yorkston J; Van Metter R
    Med Phys; 2007 Oct; 34(10):3904-15. PubMed ID: 17985636
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual-energy KUB radiographic examination for the detection of renal calculus.
    Yen P; Bailly G; Pringle C; Barnes D
    Acad Radiol; 2014 Aug; 21(8):1035-7. PubMed ID: 25018075
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthetic CT: simulating low dose single and dual energy protocols from a dual energy scan.
    Wang AS; Pelc NJ
    Med Phys; 2011 Oct; 38(10):5551-62. PubMed ID: 21992373
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.