BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 7892183)

  • 1. Genomic remnants of alpha-globin genes in the hemoglobinless antarctic icefishes.
    Cocca E; Ratnayake-Lecamwasam M; Parker SK; Camardella L; Ciaramella M; di Prisco G; Detrich HW
    Proc Natl Acad Sci U S A; 1995 Mar; 92(6):1817-21. PubMed ID: 7892183
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tracking the evolutionary loss of hemoglobin expression by the white-blooded Antarctic icefishes.
    di Prisco G; Cocca E; Parker S; Detrich H
    Gene; 2002 Aug; 295(2):185-91. PubMed ID: 12354652
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The major adult alpha-globin gene of antarctic teleosts and its remnants in the hemoglobinless icefishes. Calibration of the mutational clock for nuclear genes.
    Zhao Y; Ratnayake-Lecamwasam M; Parker SK; Cocca E; Camardella L; di Prisco G; Detrich HW
    J Biol Chem; 1998 Jun; 273(24):14745-52. PubMed ID: 9614073
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A genomic fossil reveals key steps in hemoglobin loss by the antarctic icefishes.
    Near TJ; Parker SK; Detrich HW
    Mol Biol Evol; 2006 Nov; 23(11):2008-16. PubMed ID: 16870682
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mapping of alpha- and beta-globin genes on Antarctic fish chromosomes by fluorescence in-situ hybridization.
    Pisano E; Cocca E; Mazzei F; Ghigliotti L; di Prisco G; Detrich HW; Ozouf-Costaz C
    Chromosome Res; 2003; 11(6):633-40. PubMed ID: 14516071
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Variable expression of myoglobin among the hemoglobinless Antarctic icefishes.
    Sidell BD; Vayda ME; Small DJ; Moylan TJ; Londraville RL; Yuan ML; Rodnick KJ; Eppley ZA; Costello L
    Proc Natl Acad Sci U S A; 1997 Apr; 94(7):3420-4. PubMed ID: 9096409
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolution and function of the globin intergenic regulatory regions of the antarctic dragonfishes (Notothenioidei: Bathydraconidae).
    Lau YT; Parker SK; Near TJ; Detrich HW
    Mol Biol Evol; 2012 Mar; 29(3):1071-80. PubMed ID: 22075115
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genomic conservation of erythropoietic microRNAs (erythromiRs) in white-blooded Antarctic icefish.
    Desvignes T; Detrich HW; Postlethwait JH
    Mar Genomics; 2016 Dec; 30():27-34. PubMed ID: 27189439
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antarctic notothenioid fishes: genomic resources and strategies for analyzing an adaptive radiation.
    Detrich HW; Amemiya CT
    Integr Comp Biol; 2010 Dec; 50(6):1009-17. PubMed ID: 21082069
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular ecophysiology of Antarctic notothenioid fishes.
    Cheng CH; Detrich HW
    Philos Trans R Soc Lond B Biol Sci; 2007 Dec; 362(1488):2215-32. PubMed ID: 17553777
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cold-Driven Hemoglobin Evolution in Antarctic Notothenioid Fishes Prior to Hemoglobin Gene Loss in White-Blooded Icefishes.
    Desvignes T; Bista I; Herrera K; Landes A; Postlethwait JH
    Mol Biol Evol; 2023 Nov; 40(11):. PubMed ID: 37879119
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relationship among circulating hemoglobin, nitric oxide synthase activities and angiogenic poise in red- and white-blooded Antarctic notothenioid fishes.
    Beers JM; Borley KA; Sidell BD
    Comp Biochem Physiol A Mol Integr Physiol; 2010 Aug; 156(4):422-9. PubMed ID: 20362691
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expansion of capacities for iron transport and sequestration reflects plasma volumes and heart mass among white-blooded notothenioid fishes.
    Kuhn DE; O'Brien KM; Crockett EL
    Am J Physiol Regul Integr Comp Physiol; 2016 Oct; 311(4):R649-R657. PubMed ID: 27465736
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of globin expression in Antarctic fish under thermal and hypoxic stress.
    Giordano D; Corti P; Coppola D; Altomonte G; Xue J; Russo R; di Prisco G; Verde C
    Mar Genomics; 2021 Jun; 57():100831. PubMed ID: 33250437
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Brain and sense organ anatomy and histology in hemoglobinless Antarctic icefishes (Perciformes: Notothenioidei: Channichthyidae).
    Eastman JT; Lannoo MJ
    J Morphol; 2004 Apr; 260(1):117-40. PubMed ID: 15052601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and expression of genes involved in transport and storage of iron in red-blooded and hemoglobin-less antarctic notothenioids.
    Scudiero R; Trinchella F; Riggio M; Parisi E
    Gene; 2007 Aug; 397(1-2):1-11. PubMed ID: 17570620
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Developmental constraint shaped genome evolution and erythrocyte loss in Antarctic fishes following paleoclimate change.
    Daane JM; Auvinet J; Stoebenau A; Yergeau D; Harris MP; Detrich HW
    PLoS Genet; 2020 Oct; 16(10):e1009173. PubMed ID: 33108368
    [TBL] [Abstract][Full Text] [Related]  

  • 18. bloodthirsty, an RBCC/TRIM gene required for erythropoiesis in zebrafish.
    Yergeau DA; Cornell CN; Parker SK; Zhou Y; Detrich HW
    Dev Biol; 2005 Jul; 283(1):97-112. PubMed ID: 15890331
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energetic costs of protein synthesis do not differ between red- and white-blooded Antarctic notothenioid fishes.
    Lewis JM; Grove TJ; O'Brien KM
    Comp Biochem Physiol A Mol Integr Physiol; 2015 Sep; 187():177-83. PubMed ID: 26051614
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inter-relationship between mitochondrial function and susceptibility to oxidative stress in red- and white-blooded Antarctic notothenioid fishes.
    Mueller IA; Grim JM; Beers JM; Crockett EL; O'Brien KM
    J Exp Biol; 2011 Nov; 214(Pt 22):3732-41. PubMed ID: 22031737
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.