These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1142 related articles for article (PubMed ID: 7892205)
1. GTP consumption of elongation factor Tu during translation of heteropolymeric mRNAs. Rodnina MV; Wintermeyer W Proc Natl Acad Sci U S A; 1995 Mar; 92(6):1945-9. PubMed ID: 7892205 [TBL] [Abstract][Full Text] [Related]
2. Stoichiometry for the elongation factor Tu.aminoacyl-tRNA complex switches with temperature. Bilgin N; Ehrenberg M Biochemistry; 1995 Jan; 34(3):715-9. PubMed ID: 7827027 [TBL] [Abstract][Full Text] [Related]
3. How many EF-Tu molecules participate in aminoacyl-tRNA binding and peptide bond formation in Escherichia coli translation? Ehrenberg M; Rojas AM; Weiser J; Kurland CG J Mol Biol; 1990 Feb; 211(4):739-49. PubMed ID: 2179565 [TBL] [Abstract][Full Text] [Related]
4. Effects of nucleotide- and aurodox-induced changes in elongation factor Tu conformation upon its interactions with aminoacyl transfer RNA. A fluorescence study. Dell VA; Miller DL; Johnson AE Biochemistry; 1990 Feb; 29(7):1757-63. PubMed ID: 2110000 [TBL] [Abstract][Full Text] [Related]
5. Fluorescence characterization of the interaction of various transfer RNA species with elongation factor Tu.GTP: evidence for a new functional role for elongation factor Tu in protein biosynthesis. Janiak F; Dell VA; Abrahamson JK; Watson BS; Miller DL; Johnson AE Biochemistry; 1990 May; 29(18):4268-77. PubMed ID: 2190631 [TBL] [Abstract][Full Text] [Related]
6. Substitution of Val20 by Gly in elongation factor Tu. Effects on the interaction with elongation factors Ts, aminoacyl-tRNA and ribosomes. Jacquet E; Parmeggiani A Eur J Biochem; 1989 Nov; 185(2):341-6. PubMed ID: 2684669 [TBL] [Abstract][Full Text] [Related]
7. Two GTPs are consumed on EF-Tu per peptide bond in poly(Phe) synthesis, in spite of switching stoichiometry of the EF-Tu.aminoacyl-tRNA complex with temperature. Dinçbaş V; Bilgin N; Scoble J; Ehrenberg M FEBS Lett; 1995 Jan; 357(1):19-22. PubMed ID: 8001671 [TBL] [Abstract][Full Text] [Related]
8. Toward a model for the interaction between elongation factor Tu and the ribosome. Weijland A; Parmeggiani A Science; 1993 Feb; 259(5099):1311-4. PubMed ID: 8446899 [TBL] [Abstract][Full Text] [Related]
9. Aminoacyl-tRNA-elongation factor Tu-ribosome interaction leading to hydrolysis of guanosine 5'-triphosphate. Takahashi K; Ghag S; Chládek S Biochemistry; 1986 Dec; 25(25):8330-6. PubMed ID: 3545292 [TBL] [Abstract][Full Text] [Related]
10. Mutagenesis of glutamine 290 in Escherichia coli and mitochondrial elongation factor Tu affects interactions with mitochondrial aminoacyl-tRNAs and GTPase activity. Hunter SE; Spremulli LL Biochemistry; 2004 Jun; 43(22):6917-27. PubMed ID: 15170329 [TBL] [Abstract][Full Text] [Related]
11. The excess GTP hydrolyzed during mistranslation is expended at the stage of EF-Tu-promoted binding of non-cognate aminoacyl-tRNA. Kakhniashvili DG; Smailov SK; Gavrilova LP FEBS Lett; 1986 Feb; 196(1):103-7. PubMed ID: 3510907 [TBL] [Abstract][Full Text] [Related]
12. Kirromycin, an inhibitor of protein biosynthesis that acts on elongation factor Tu. Wolf H; Chinali G; Parmeggiani A Proc Natl Acad Sci U S A; 1974 Dec; 71(12):4910-4. PubMed ID: 4373734 [TBL] [Abstract][Full Text] [Related]
13. The G222D mutation in elongation factor Tu inhibits the codon-induced conformational changes leading to GTPase activation on the ribosome. Vorstenbosch E; Pape T; Rodnina MV; Kraal B; Wintermeyer W EMBO J; 1996 Dec; 15(23):6766-74. PubMed ID: 8978702 [TBL] [Abstract][Full Text] [Related]
14. The reaction of ribosomes with elongation factor Tu.GTP complexes. Aminoacyl-tRNA-independent reactions in the elongation cycle determine the accuracy of protein synthesis. Thompson RC; Dix DB; Karim AM J Biol Chem; 1986 Apr; 261(11):4868-74. PubMed ID: 3514605 [TBL] [Abstract][Full Text] [Related]
15. Binding of aminoacyl-tRNA to ribosomes promoted by elongation factor Tu. Studies on the role of GTP hydrolysis. Yokosawa H; Kawakita M; Arai K; Inoue-Yokosawa N; Kaziro Y J Biochem; 1975 Apr; 77(4):719-28. PubMed ID: 1097432 [TBL] [Abstract][Full Text] [Related]
16. Elongation factor-Tu can repetitively engage aminoacyl-tRNA within the ribosome during the proofreading stage of tRNA selection. Morse JC; Girodat D; Burnett BJ; Holm M; Altman RB; Sanbonmatsu KY; Wieden HJ; Blanchard SC Proc Natl Acad Sci U S A; 2020 Feb; 117(7):3610-3620. PubMed ID: 32024753 [TBL] [Abstract][Full Text] [Related]
17. The complex formation between Escherichia coli aminoacyl-tRNA, elongation factor Tu and GTP. The effect of the side-chain of the amino acid linked to tRNA. Wagner T; Sprinzl M Eur J Biochem; 1980; 108(1):213-21. PubMed ID: 6773761 [TBL] [Abstract][Full Text] [Related]
18. Decoding at the ribosomal A site. The effect of a defined codon-anticodon mismatch upon the behavior of bound aminoacyl transfer RNA. Hornig H; Woolley P; Lührmann R J Biol Chem; 1984 May; 259(9):5632-6. PubMed ID: 6371008 [TBL] [Abstract][Full Text] [Related]
19. A single amino acid substitution in elongation factor Tu disrupts interaction between the ternary complex and the ribosome. Tubulekas I; Hughes D J Bacteriol; 1993 Jan; 175(1):240-50. PubMed ID: 8416899 [TBL] [Abstract][Full Text] [Related]
20. Effects of mutagenesis of Gln97 in the switch II region of Escherichia coli elongation factor Tu on its interaction with guanine nucleotides, elongation factor Ts, and aminoacyl-tRNA. Navratil T; Spremulli LL Biochemistry; 2003 Nov; 42(46):13587-95. PubMed ID: 14622005 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]