These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 7892752)
1. Modification of an in-vitro method for estimating the bioavailability of zinc and calcium from foods. Shen LH; Luten J; Robberecht H; Bindels J; Deelstra H Z Lebensm Unters Forsch; 1994 Dec; 199(6):442-5. PubMed ID: 7892752 [TBL] [Abstract][Full Text] [Related]
2. A continuous in vitro method for estimation of the bioavailability of minerals and trace elements in foods: application to breads varying in phytic acid content. Wolters MG; Schreuder HA; van den Heuvel G; van Lonkhuijsen HJ; Hermus RJ; Voragen AG Br J Nutr; 1993 May; 69(3):849-61. PubMed ID: 8329359 [TBL] [Abstract][Full Text] [Related]
3. A comparison of the test tube and the dialysis tubing in vitro methods for estimating the bioavailability of phosphorus in feed ingredients for swine. Bollinger DW; Tsunoda A; Ledoux DR; Ellersieck MR; Veum TL J Agric Food Chem; 2005 May; 53(9):3287-94. PubMed ID: 15853361 [TBL] [Abstract][Full Text] [Related]
4. In vitro availability of calcium, iron, and zinc from first-age infant formulae and human milk. Bosscher D; Van Caillie-Bertrand M; Robberecht H; Van Dyck K; Van Cauwenbergh R; Deelstra H J Pediatr Gastroenterol Nutr; 2001 Jan; 32(1):54-8. PubMed ID: 11176326 [TBL] [Abstract][Full Text] [Related]
5. Calcium, iron, and zinc uptake from digests of infant formulas by Caco-2 cells. Jovaní M; Barberá R; Farré R; Martín de Aguilera E J Agric Food Chem; 2001 Jul; 49(7):3480-5. PubMed ID: 11453795 [TBL] [Abstract][Full Text] [Related]
6. The influence of different food components on the in vitro availability of iron, zinc and calcium from a composed meal. Van Dyck K; Tas S; Robberecht H; Deelstra H Int J Food Sci Nutr; 1996 Nov; 47(6):499-506. PubMed ID: 8933204 [TBL] [Abstract][Full Text] [Related]
7. A method for in vitro determination of calcium, iron and zinc availability from first-age infant formula and human milk. Bosscher D; Lu Z; Van Cauwenbergh R; Van Caillie-Bertrand M; Robberecht H; Deelstra H Int J Food Sci Nutr; 2001 Mar; 52(2):173-82. PubMed ID: 11303465 [TBL] [Abstract][Full Text] [Related]
8. Evaluation of the content and the potential bioavailability of minerals from gluten-free products. Suliburska J; Krejpcio Z; Reguła J; Grochowicz A Acta Sci Pol Technol Aliment; 2013; 12(1):75-9. PubMed ID: 24584867 [TBL] [Abstract][Full Text] [Related]
9. Low gastric hydrochloric acid secretion and mineral bioavailability. Champagne ET Adv Exp Med Biol; 1989; 249():173-84. PubMed ID: 2543192 [TBL] [Abstract][Full Text] [Related]
10. [In vitro availability of minerals in infant foods with different protein source]. Pérez-Llamas F; Larqué E; Marín JF; Zamora S Nutr Hosp; 2001; 16(5):157-61. PubMed ID: 11702418 [TBL] [Abstract][Full Text] [Related]
11. Effect of thickening agents, based on soluble dietary fiber, on the availability of calcium, iron, and zinc from infant formulas. Bosscher D; Van Caillie-Bertrand M; Deelstra H Nutrition; 2001; 17(7-8):614-8. PubMed ID: 11448582 [TBL] [Abstract][Full Text] [Related]
12. In vitro determination of calcium bioavailability of milk, dairy products and infant formulas. Unal G; El SN; Kiliç S Int J Food Sci Nutr; 2005 Feb; 56(1):13-22. PubMed ID: 16019311 [TBL] [Abstract][Full Text] [Related]
13. A dynamic continuous-flow dialysis system with on-line electrothermal atomic-absorption spectrometric and pH measurements for in-vitro determination of iron bioavailability by simulated gastrointestinal digestion. Promchan J; Shiowatana J Anal Bioanal Chem; 2005 Jul; 382(6):1360-7. PubMed ID: 15947915 [TBL] [Abstract][Full Text] [Related]
14. Fortification of milk with calcium: effect on calcium bioavailability and interactions with iron and zinc. Perales S; Barberá R; Lagarda MJ; Farré R J Agric Food Chem; 2006 Jun; 54(13):4901-6. PubMed ID: 16787046 [TBL] [Abstract][Full Text] [Related]
15. The effect of calcium salts, ascorbic acid and peptic pH on calcium, zinc and iron bioavailabilities from fortified human milk using an in vitro digestion/Caco-2 cell model. Etcheverry P; Wallingford JC; Miller DD; Glahn RP Int J Vitam Nutr Res; 2005 May; 75(3):171-8. PubMed ID: 16028632 [TBL] [Abstract][Full Text] [Related]
16. Estimation of the bioavailability of zinc and calcium from human, cow's, goat, and sheep milk by an in vitro method. Shen L; Robberecht H; Van Dael P; Deelstra H Biol Trace Elem Res; 1995; 49(2-3):107-118. PubMed ID: 8562279 [TBL] [Abstract][Full Text] [Related]
17. Does Lactobacillus plantarum or ultrafiltration process improve Ca, Mg, Zn and P bioavailability from fermented goats' milk? Bergillos-Meca T; Cabrera-Vique C; Artacho R; Moreno-Montoro M; Navarro-Alarcón M; Olalla M; Giménez R; Seiquer I; Ruiz-López MD Food Chem; 2015 Nov; 187():314-21. PubMed ID: 25977032 [TBL] [Abstract][Full Text] [Related]
18. Bioaccessibility of calcium, iron and zinc from three legume samples. Sahuquillo A; Barberá R; Farré R Nahrung; 2003 Dec; 47(6):438-41. PubMed ID: 14727775 [TBL] [Abstract][Full Text] [Related]
19. Bioavailability of insect growth regulators in citrus and stone fruits. Paya P; Mulero J; Oliva J; Camara MA; Zafrilla P; Barba A Commun Agric Appl Biol Sci; 2007; 72(2):151-9. PubMed ID: 18399436 [TBL] [Abstract][Full Text] [Related]
20. Biofortification of rice with zinc: assessment of the relative bioavailability of zinc in a Caco-2 cell model and suckling rat pups. Jou MY; Du X; Hotz C; Lönnerdal B J Agric Food Chem; 2012 Apr; 60(14):3650-7. PubMed ID: 22428952 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]