BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 7893145)

  • 41. Chemiluminescence from thermal oxidation of amino acids and proteins.
    Millington KR; Ishii H; Maurdev G
    Amino Acids; 2010 May; 38(5):1395-405. PubMed ID: 19763784
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Carbonylated proteins exposed to UVA and to blue light generate reactive oxygen species through a type I photosensitizing reaction.
    Mizutani T; Sumida H; Sagawa Y; Okano Y; Masaki H
    J Dermatol Sci; 2016 Dec; 84(3):314-321. PubMed ID: 27743910
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The influence of dioxygen on luminol chemiluminescence.
    Baj S; Krawczyk T; Staszewska K
    Luminescence; 2009; 24(5):348-54. PubMed ID: 19294631
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Interaction of reactive oxygen and nitrogen species with albumin- and methemoglobin-bound dinitrosyl-iron complexes.
    Shumaev KB; Gubkin AA; Serezhenkov VA; Lobysheva II; Kosmachevskaya OV; Ruuge EK; Lankin VZ; Topunov AF; Vanin AF
    Nitric Oxide; 2008 Feb; 18(1):37-46. PubMed ID: 18036856
    [TBL] [Abstract][Full Text] [Related]  

  • 45. π-Cation interactions as the origin of the weak absorption at 532 nm observed in tryptophan-containing polypeptides.
    Roveri OA; Braslavsky SE
    Photochem Photobiol Sci; 2012 Jun; 11(6):962-6. PubMed ID: 22273601
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Oxygen- or organic hydroperoxide-induced chemiluminescence of brain and liver homogenates.
    Cadenas E; Varsavsky AI; Boveris A; Chance B
    Biochem J; 1981 Sep; 198(3):645-54. PubMed ID: 7326030
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Protective effects of resveratrol against oxidative/nitrative modifications of plasma proteins and lipids exposed to peroxynitrite.
    Olas B; Nowak P; Kolodziejczyk J; Ponczek M; Wachowicz B
    J Nutr Biochem; 2006 Feb; 17(2):96-102. PubMed ID: 16111878
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Peroxynitrite-mediated modification of proteins at physiological carbon dioxide concentration: pH dependence of carbonyl formation, tyrosine nitration, and methionine oxidation.
    Tien M; Berlett BS; Levine RL; Chock PB; Stadtman ER
    Proc Natl Acad Sci U S A; 1999 Jul; 96(14):7809-14. PubMed ID: 10393903
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Alpha-Ketoglutarate: A Potential Inner Mitochondrial and Cytosolic Protector against Peroxynitrite and Peroxynitrite-Induced Nitration?
    Greilberger J; Greilberger M; Wintersteiger R; Zangger K; Herwig R
    Antioxidants (Basel); 2021 Sep; 10(9):. PubMed ID: 34573133
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Ultraweak chemiluminescence: a sensitive assay for oxidative radical reactions.
    Boveris A; Cadenas E; Chance B
    Fed Proc; 1981 Feb; 40(2):195-8. PubMed ID: 7461143
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Continuous monitoring of hydroperoxide-induced peroxidation in human erythrocytes by low-level chemiluminescence.
    Yeşilkaya A; Yeğin A; Yücel G; Alicigüzel Y; Aksu TA
    Int J Clin Lab Res; 1996; 26(1):60-8. PubMed ID: 8739858
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Protective role of hemopexin on heme-dependent lung oxidative stress.
    Barnard ML; Muller-Eberhard U; Turrens JF
    Biochem Biophys Res Commun; 1993 Apr; 192(1):82-7. PubMed ID: 8476438
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Peroxynitrite modulates acidic fibroblast growth factor (FGF-1) activity.
    Bagnasco P; MacMillan-Crow LA; Greendorfer JS; Young CJ; Andrews L; Thompson JA
    Arch Biochem Biophys; 2003 Nov; 419(2):178-89. PubMed ID: 14592461
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Weak chemiluminescence from infarcted rat brain and basic studies on the generation of chemiluminescence].
    Arai H; Kogure K
    No To Shinkei; 1985 Jan; 37(1):65-72. PubMed ID: 2983746
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Hypochlorous and peracetic acid induced oxidation of dairy proteins.
    Kerkaert B; Mestdagh F; Cucu T; Aedo PR; Ling SY; De Meulenaer B
    J Agric Food Chem; 2011 Feb; 59(3):907-14. PubMed ID: 21214246
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Peroxynitrite inactivation of tyrosine hydroxylase: mediation by sulfhydryl oxidation, not tyrosine nitration.
    Kuhn DM; Aretha CW; Geddes TJ
    J Neurosci; 1999 Dec; 19(23):10289-94. PubMed ID: 10575026
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Peroxynitrite-mediated oxidative protein modifications.
    Ischiropoulos H; al-Mehdi AB
    FEBS Lett; 1995 May; 364(3):279-82. PubMed ID: 7758583
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Light emission from tryptophan oxidation by hypobromous acid.
    Petrônio MS; Ximenes VF
    Luminescence; 2013; 28(6):853-9. PubMed ID: 23034821
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Taurine bromamine: a potent oxidant of tryptophan residues in albumin.
    Ximenes VF; da Fonseca LM; de Almeida AC
    Arch Biochem Biophys; 2011 Mar; 507(2):315-22. PubMed ID: 21187060
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Dopamine-melanin protects against tyrosine nitration, tryptophan oxidation and Ca(2+)-ATPase inactivation induced by peroxynitrite.
    Stepień K; Zajdel A; Wilczok A; Wilczok T; Grzelak A; Mateja A; Soszyński M; Bartosz G
    Biochim Biophys Acta; 2000 Oct; 1523(2-3):189-95. PubMed ID: 11042383
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.