These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 7893357)

  • 1. Description and evaluation of a new 3-D computerized treatment planning dose compensator system.
    Beddar AS; Thomason C; Leung PM
    Med Dosim; 1994; 19(4):227-35. PubMed ID: 7893357
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation and quality control of a commercial 3-D dose compensator system.
    Paliwal BR; Podgorsak MB; Harari PM; Haney P; Jursinic PA
    Med Dosim; 1994; 19(3):179-85. PubMed ID: 7818759
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monte Carlo evaluation of tissue inhomogeneity effects in the treatment of the head and neck.
    Wang L; Yorke E; Chui CS
    Int J Radiat Oncol Biol Phys; 2001 Aug; 50(5):1339-49. PubMed ID: 11483347
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of two commercial CT metal artifact reduction algorithms for use in proton radiotherapy treatment planning in the head and neck area.
    Andersson KM; Dahlgren CV; Reizenstein J; Cao Y; Ahnesjö A; Thunberg P
    Med Phys; 2018 Oct; 45(10):4329-4344. PubMed ID: 30076784
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Implementation of a three-dimensional compensation system based on computed tomography generated surface contours and tissue inhomogeneities.
    Jursinic PA; Podgorsak MB; Paliwal BR
    Med Phys; 1994 Mar; 21(3):357-65. PubMed ID: 8208210
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of optimized compensators on a 3D planning system.
    Basran PS; Ansbacher W; Field GC; Murray BR
    Med Phys; 1998 Oct; 25(10):1837-44. PubMed ID: 9800689
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigating CT to CBCT image registration for head and neck proton therapy as a tool for daily dose recalculation.
    Landry G; Nijhuis R; Dedes G; Handrack J; Thieke C; Janssens G; Orban de Xivry J; Reiner M; Kamp F; Wilkens JJ; Paganelli C; Riboldi M; Baroni G; Ganswindt U; Belka C; Parodi K
    Med Phys; 2015 Mar; 42(3):1354-66. PubMed ID: 25735290
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluating the impact of extended field-of-view CT reconstructions on CT values and dosimetric accuracy for radiation therapy.
    Cheung JP; Shugard E; Mistry N; Pouliot J; Chen J
    Med Phys; 2019 Feb; 46(2):892-901. PubMed ID: 30457170
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computer aided design and verification of megavoltage tissue compensators for oblique beams.
    Faddegon BA; Pfalzner P
    Med Phys; 1988; 15(5):757-62. PubMed ID: 3141758
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tissue compensation and verification of dose uniformity.
    Park HC; Almond PR
    Med Dosim; 1993; 18(4):193-6. PubMed ID: 8311915
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A study of effective attenuation coefficient for calculating tissue compensator thickness.
    Bagne FR; Samsami N; Hoke SW; Bronn DG
    Med Phys; 1990; 17(1):117-21. PubMed ID: 2106610
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of tabletop materials for autocontouring in CT treatment planning.
    Swann-D'Emilia B; Das IJ; McGee K
    Med Dosim; 1994; 19(4):223-6. PubMed ID: 7893356
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A dosimetric comparison of three compensator design methods for the mantle field.
    Cantwell JP; Renner WD; O'Connor TP; Bermudez NM
    Med Dosim; 1989 Dec; 14(4):257-63. PubMed ID: 2513827
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Re-planning for compensator-based IMRT with original compensators.
    Zhang G; Feygelman V; Stevens C; Li W; Leuthold S; Springett G; Hoffe S
    Med Dosim; 2011; 36(1):102-8. PubMed ID: 20207532
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigating deformable image registration and scatter correction for CBCT-based dose calculation in adaptive IMPT.
    Kurz C; Kamp F; Park YK; Zöllner C; Rit S; Hansen D; Podesta M; Sharp GC; Li M; Reiner M; Hofmaier J; Neppl S; Thieke C; Nijhuis R; Ganswindt U; Belka C; Winey BA; Parodi K; Landry G
    Med Phys; 2016 Oct; 43(10):5635. PubMed ID: 27782706
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automated range compensation for proton therapy.
    Wagner MS
    Med Phys; 1982; 9(5):749-52. PubMed ID: 6296648
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clinical considerations in the use of missing tissue compensators for head and neck cases.
    Sharma SC; Johnson MW
    Med Dosim; 1998; 23(4):267-70. PubMed ID: 9863724
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tissue compensators made of solid water or lead for megavoltage X-ray radiotherapy.
    Constantinou C; Harrington JC
    Med Dosim; 1989; 14(1):41-7. PubMed ID: 2500947
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inclusion of compensator-induced scatter and beam filtration in pencil beam dose calculations.
    du Plessis FC; Willemse CA
    Med Phys; 2006 Aug; 33(8):2896-904. PubMed ID: 16964866
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intraoperative computed tomography imaging for dose calculation in intraoperative electron radiation therapy: Initial clinical observations.
    García-Vázquez V; Calvo FA; Ledesma-Carbayo MJ; Sole CV; Calvo-Haro J; Desco M; Pascau J
    PLoS One; 2020; 15(1):e0227155. PubMed ID: 31923183
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.