These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 7893376)

  • 1. A novel anticholinesterase THB013: biochemical and behavioural studies.
    Adem A; Mohammed AH; Winblad B; Henriksson BE
    J Neural Transm Park Dis Dement Sect; 1994; 8(1-2):139-48. PubMed ID: 7893376
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The next generation of cholinesterase inhibitors.
    Adem A
    Acta Neurol Scand Suppl; 1993; 149():10-2. PubMed ID: 8128831
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of novel tacrine-related cholinesterase inhibitors in the reversal of 3-quinuclidinyl benzilate-induced cognitive deficit in rats--Is there a potential for Alzheimer's disease treatment?
    Misik J; Korabecny J; Nepovimova E; Kracmarova A; Kassa J
    Neurosci Lett; 2016 Jan; 612():261-268. PubMed ID: 26708634
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of tacrine (THA) on spatial reference memory and cholinergic enzymes in specific rat brain regions.
    Jackson JJ; Soliman MR
    Life Sci; 1996; 58(1):47-54. PubMed ID: 8628110
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of novel 7-MEOTA-donepezil like hybrids and N-alkylated tacrine analogues in the treatment of quinuclidinyl benzilate-induced behavioural deficits in rats performing the multiple T-maze test.
    Misik J; Korabecny J; Nepovimova E; Cabelova P; Kassa J
    Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub; 2015 Dec; 159(4):547-53. PubMed ID: 25690521
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Therapeutic Potential of Multifunctional Tacrine Analogues.
    Przybyłowska M; Kowalski S; Dzierzbicka K; Inkielewicz-Stepniak I
    Curr Neuropharmacol; 2019; 17(5):472-490. PubMed ID: 29651948
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tacrine(10)-hupyridone, a dual-binding acetylcholinesterase inhibitor, potently attenuates scopolamine-induced impairments of cognition in mice.
    Chen H; Xiang S; Huang L; Lin J; Hu S; Mak SH; Wang C; Wang Q; Cui W; Han Y
    Metab Brain Dis; 2018 Aug; 33(4):1131-1139. PubMed ID: 29564727
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiple effects of tetrahydroaminoacridine on the cholinergic system: biochemical and behavioural aspects.
    Adem A; Mohammed AK; Winblad B
    J Neural Transm Park Dis Dement Sect; 1990; 2(2):113-28. PubMed ID: 2222779
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Attenuation of scopolamine-induced deficits in navigational memory performance in rats by bis(7)-tacrine, a novel dimeric AChE inhibitor.
    Wang H; Carlier PR; Ho WL; Lee NT; Pang YP; Han YF
    Zhongguo Yao Li Xue Bao; 1999 Mar; 20(3):211-7. PubMed ID: 10452094
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of cholinesterase inhibitors on learning and memory in rats: a brief review with special reference to THA.
    Mohammed AH
    Acta Neurol Scand Suppl; 1993; 149():13-5. PubMed ID: 8128832
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Substituted Aminobenzothiazole Derivatives of Tacrine: Synthesis and Study on Learning and Memory Impairment in Scopolamine-Induced Model of Amnesia in Rat.
    Ahmadi A; Roghani M; Noori S; Nahri-Niknafs B
    Mini Rev Med Chem; 2019; 19(1):72-78. PubMed ID: 30009706
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cholinergic therapy in dementia.
    Whitehouse PJ
    Acta Neurol Scand Suppl; 1993; 149():42-5. PubMed ID: 8128838
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Huperzine A, a novel promising acetylcholinesterase inhibitor.
    Cheng DH; Ren H; Tang XC
    Neuroreport; 1996 Dec; 8(1):97-101. PubMed ID: 9051760
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cholinesterase inhibition in the scopolamine model of dementia.
    Wesnes KA; Simpson PM; White L; Pinker S; Jertz G; Murphy M; Siegfried K
    Ann N Y Acad Sci; 1991; 640():268-71. PubMed ID: 1776749
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The cholinergic pharmacology of tetrahydroaminoacridine in vivo and in vitro.
    Hunter AJ; Murray TK; Jones JA; Cross AJ; Green AR
    Br J Pharmacol; 1989 Sep; 98(1):79-86. PubMed ID: 2804555
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Imaging of nicotinic and muscarinic receptors in Alzheimer's disease: effect of tacrine treatment.
    Nordberg A; Lundqvist H; Hartvig P; Andersson J; Johansson M; Hellstrŏm-Lindahi E; Långström B
    Dement Geriatr Cogn Disord; 1997; 8(2):78-84. PubMed ID: 9065319
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flumazenil and tacrine increase the effectiveness of ondansetron on scopolamine-induced impairment of spatial learning in rats.
    Diez-Ariza M; Redondo C; García-Alloza M; Lasheras B; Del Río J; Ramírez MJ
    Psychopharmacology (Berl); 2003 Aug; 169(1):35-41. PubMed ID: 12845416
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Side effects of long acting cholinesterase inhibitors.
    Beermann B
    Acta Neurol Scand Suppl; 1993; 149():53-4. PubMed ID: 8128840
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An inverted U-shaped curve for heptylphysostigmine on radial maze performance in rats: comparison with other cholinesterase inhibitors.
    Braida D; Paladini E; Griffini P; Lamperti M; Maggi A; Sala M
    Eur J Pharmacol; 1996 Apr; 302(1-3):13-20. PubMed ID: 8790986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and Development of Novel Transdermal Nanoemulgel for Alzheimer's Disease: Pharmacokinetic, Pharmacodynamic and Biochemical Investigations.
    Setya S; Madaan T; Razdan BK; Farswan M; Talegaonkar S
    Curr Drug Deliv; 2019; 16(10):902-912. PubMed ID: 31642410
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.