These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 7893397)

  • 21. Facilitatory effect of ritanserin is mediated by dopamine D(1) receptors on olfactory learning in young rats.
    Zhang JJ; Okutani F; Yagi F; Inoue S; Kaba H
    Dev Psychobiol; 2000 Dec; 37(4):246-52. PubMed ID: 11084606
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Protein synthesis inhibition in the basolateral amygdala following retrieval does not impair expression of morphine-associated conditioned place preference.
    Yim AJ; Moraes CR; Ferreira TL; Oliveira MG
    Behav Brain Res; 2006 Jul; 171(1):162-9. PubMed ID: 16677727
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhancement of extinction memory consolidation: the role of the noradrenergic and GABAergic systems within the basolateral amygdala.
    Berlau DJ; McGaugh JL
    Neurobiol Learn Mem; 2006 Sep; 86(2):123-32. PubMed ID: 16458544
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Opioid modulation of Fos protein expression and olfactory circuitry plays a pivotal role in what neonates remember.
    Roth TL; Moriceau S; Sullivan RM
    Learn Mem; 2006; 13(5):590-8. PubMed ID: 17015856
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mitral cell beta1 and 5-HT2A receptor colocalization and cAMP coregulation: a new model of norepinephrine-induced learning in the olfactory bulb.
    Yuan Q; Harley CW; McLean JH
    Learn Mem; 2003; 10(1):5-15. PubMed ID: 12551959
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interactions between perinatal and neonatal associative learning defined by contiguous olfactory and tactile stimulation.
    Domínguez HD; López MF; Molina JC
    Neurobiol Learn Mem; 1999 May; 71(3):272-88. PubMed ID: 10196106
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Role of the amygdala complex in early olfactory associative learning.
    Sullivan RM; Wilson DA
    Behav Neurosci; 1993 Apr; 107(2):254-63. PubMed ID: 8484891
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Glucocorticoids interact with the noradrenergic arousal system in the nucleus accumbens shell to enhance memory consolidation of both appetitive and aversive taste learning.
    Wichmann R; Fornari RV; Roozendaal B
    Neurobiol Learn Mem; 2012 Sep; 98(2):197-205. PubMed ID: 22750445
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Complementary roles for the amygdala and hippocampus during different phases of appetitive information processing.
    Holahan MR
    Neurobiol Learn Mem; 2005 Sep; 84(2):124-31. PubMed ID: 16046157
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Classical conditioning in the rat fetus. III. Retention, extinction, and re-activation of the conditioned response (CR).
    Smotherman WP
    Dev Psychobiol; 2003 Mar; 42(2):181-93. PubMed ID: 12555282
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Short-term memory reactivation of a weak CS-US association promotes long-term memory persistence in conditioned odor aversion.
    Tovar-Díaz J; Morín JP; Ríos-Carrillo JE; Sánchez de Jesús H; Roldán-Roldán G
    Learn Mem; 2021 May; 28(5):153-161. PubMed ID: 33858968
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Blockade of noradrenergic receptors in the basolateral amygdala impairs taste memory.
    Miranda MI; LaLumiere RT; Buen TV; Bermudez-Rattoni F; McGaugh JL
    Eur J Neurosci; 2003 Nov; 18(9):2605-10. PubMed ID: 14622162
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Gabaergic control of olfactory learning in young rats.
    Okutani F; Yagi F; Kaba H
    Neuroscience; 1999; 93(4):1297-300. PubMed ID: 10501453
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The ontogeny of conditioned odor potentiation of startle.
    Richardson R; Paxinos G; Lee J
    Behav Neurosci; 2000 Dec; 114(6):1167-73. PubMed ID: 11142648
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Neural correlates of conditioned odor avoidance in infant rats.
    Sullivan RM; Wilson DA
    Behav Neurosci; 1991 Apr; 105(2):307-12. PubMed ID: 2043275
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ontogenetic differences in the expression of odor-aversion learning in 4- and 8-day-old rats.
    Miller JS; Molina JC; Spear NE
    Dev Psychobiol; 1990 May; 23(4):319-30. PubMed ID: 2170214
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Association of an odor with activation of olfactory bulb noradrenergic beta-receptors or locus coeruleus stimulation is sufficient to produce learned approach responses to that odor in neonatal rats.
    Sullivan RM; Stackenwalt G; Nasr F; Lemon C; Wilson DA
    Behav Neurosci; 2000 Oct; 114(5):957-62. PubMed ID: 11085610
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Neurotransmitter release during delay eyeblink classical conditioning: role of norepinephrine in consolidation and effect of age.
    Paredes DA; Cartford MC; Catlow BJ; Samec A; Avilas M; George A; Schlunck A; Small B; Bickford PC
    Neurobiol Learn Mem; 2009 Oct; 92(3):267-82. PubMed ID: 18809505
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Neurotoxic hippocampal lesions fail to impair reinstatement of an appetitively conditioned response.
    Fox GD; Holland PC
    Behav Neurosci; 1998 Feb; 112(1):255-60. PubMed ID: 9517833
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cholecystokinin conditioning in rats: ontogenetic determinants.
    Weller A; Blass EM
    Behav Neurosci; 1990 Feb; 104(1):199-206. PubMed ID: 2317277
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.