These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 7893648)

  • 1. Elimination of the sensitivity of L-aspartase to active-site-directed inactivation without alteration of catalytic activity.
    Giorgianni F; Beranová S; Wesdemiotis C; Viola RE
    Biochemistry; 1995 Mar; 34(11):3529-35. PubMed ID: 7893648
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mapping the mechanism-based modification sites in L-aspartase from Escherichia coli.
    Giorgianni F; Beranová S; Wesdemiotis C; Viola RE
    Arch Biochem Biophys; 1997 May; 341(2):329-36. PubMed ID: 9169023
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism-based inactivation of L-aspartase from Escherichia coli.
    Schindler JF; Viola RE
    Biochemistry; 1994 Aug; 33(31):9365-70. PubMed ID: 8049238
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cloning and over-expression of thermostable Bacillus sp. YM55-1 aspartase and site-directed mutagenesis for probing a catalytic residue.
    Kawata Y; Tamura K; Kawamura M; Ikei K; Mizobata T; Nagai J; Fujita M; Yano S; Tokushige M; Yumoto N
    Eur J Biochem; 2000 Mar; 267(6):1847-57. PubMed ID: 10712618
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of functionally important amino acids in L-aspartate ammonia-lyase from Escherichia coli.
    Jayasekera MM; Shi W; Farber GK; Viola RE
    Biochemistry; 1997 Jul; 36(30):9145-50. PubMed ID: 9230046
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Site-directed mutagenesis, kinetic and inhibition studies of aspartate ammonia lyase from Bacillus sp. YM55-1.
    Puthan Veetil V; Raj H; Quax WJ; Janssen DB; Poelarends GJ
    FEBS J; 2009 Jun; 276(11):2994-3007. PubMed ID: 19490103
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activation of aspartase by site-directed mutagenesis.
    Murase S; Takagi JS; Higashi Y; Imaishi H; Yumoto N; Tokushige M
    Biochem Biophys Res Commun; 1991 May; 177(1):414-9. PubMed ID: 2043125
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutagenic investigation of conserved functional amino acids in Escherichia coli L-aspartase.
    Saribaş AS; Schindler JF; Viola RE
    J Biol Chem; 1994 Mar; 269(9):6313-9. PubMed ID: 8119980
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assignment of catalytically essential cysteine residues in aspartase by selective chemical modification with N-(7-dimethylamino-4-methylcoumarynyl)maleimide.
    Ida N; Tokushige M
    J Biochem; 1985 Sep; 98(3):793-7. PubMed ID: 3910645
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fumaraldehydic acid-induced inactivation of aspartase.
    Higashi Y; Ida N; Tokushige M
    Biochem Int; 1988 Jul; 17(1):103-9. PubMed ID: 3142474
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structure of thermostable aspartase from Bacillus sp. YM55-1: structure-based exploration of functional sites in the aspartase family.
    Fujii T; Sakai H; Kawata Y; Hata Y
    J Mol Biol; 2003 May; 328(3):635-54. PubMed ID: 12706722
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancement of the stability and activity of aspartase by random and site-directed mutagenesis.
    Zhang HY; Zhang J; Lin L; Du WY; Lu J
    Biochem Biophys Res Commun; 1993 Apr; 192(1):15-21. PubMed ID: 8476416
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recovery of catalytic activity from an inactive aggregated mutant of l-aspartase.
    Jayasekera MM; Viola RE
    Biochem Biophys Res Commun; 1999 Oct; 264(2):596-600. PubMed ID: 10529408
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aspartase/fumarase superfamily: a common catalytic strategy involving general base-catalyzed formation of a highly stabilized aci-carboxylate intermediate.
    Puthan Veetil V; Fibriansah G; Raj H; Thunnissen AM; Poelarends GJ
    Biochemistry; 2012 May; 51(21):4237-43. PubMed ID: 22551392
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studies on aspartase. II. Role of sulfhydryl groups in aspartase from Escherichia coli.
    Mizuta K; Tokushige M
    Biochim Biophys Acta; 1975 Sep; 403(1):221-31. PubMed ID: 240429
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancement of catalytic activity by gene truncation: activation of L-aspartase from Escherichia coli.
    Jayasekera MM; Saribaş AS; Viola RE
    Biochem Biophys Res Commun; 1997 Sep; 238(2):411-4. PubMed ID: 9299522
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of three types of aspartase activated by site-directed mutagenesis, limited proteolysis, and acetylation.
    Murase S; Yumoto N
    J Biochem; 1993 Nov; 114(5):735-9. PubMed ID: 8113229
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical modification of essential histidine residues in aspartase with diethylpyrocarbonate.
    Ida N; Tokushige M
    J Biochem; 1984 Nov; 96(5):1315-21. PubMed ID: 6396297
    [TBL] [Abstract][Full Text] [Related]  

  • 19. L-aspartase: new tricks from an old enzyme.
    Viola RE
    Adv Enzymol Relat Areas Mol Biol; 2000; 74():295-341. PubMed ID: 10800598
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Site-directed mutagenesis of cysteinyl residues in aspartase of Escherichia coli.
    Chen HH; Chen JT; Tsai H
    Ann N Y Acad Sci; 1996 Oct; 799():70-3. PubMed ID: 8958076
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.