BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 7893648)

  • 1. Elimination of the sensitivity of L-aspartase to active-site-directed inactivation without alteration of catalytic activity.
    Giorgianni F; Beranová S; Wesdemiotis C; Viola RE
    Biochemistry; 1995 Mar; 34(11):3529-35. PubMed ID: 7893648
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mapping the mechanism-based modification sites in L-aspartase from Escherichia coli.
    Giorgianni F; Beranová S; Wesdemiotis C; Viola RE
    Arch Biochem Biophys; 1997 May; 341(2):329-36. PubMed ID: 9169023
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism-based inactivation of L-aspartase from Escherichia coli.
    Schindler JF; Viola RE
    Biochemistry; 1994 Aug; 33(31):9365-70. PubMed ID: 8049238
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cloning and over-expression of thermostable Bacillus sp. YM55-1 aspartase and site-directed mutagenesis for probing a catalytic residue.
    Kawata Y; Tamura K; Kawamura M; Ikei K; Mizobata T; Nagai J; Fujita M; Yano S; Tokushige M; Yumoto N
    Eur J Biochem; 2000 Mar; 267(6):1847-57. PubMed ID: 10712618
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of functionally important amino acids in L-aspartate ammonia-lyase from Escherichia coli.
    Jayasekera MM; Shi W; Farber GK; Viola RE
    Biochemistry; 1997 Jul; 36(30):9145-50. PubMed ID: 9230046
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Site-directed mutagenesis, kinetic and inhibition studies of aspartate ammonia lyase from Bacillus sp. YM55-1.
    Puthan Veetil V; Raj H; Quax WJ; Janssen DB; Poelarends GJ
    FEBS J; 2009 Jun; 276(11):2994-3007. PubMed ID: 19490103
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activation of aspartase by site-directed mutagenesis.
    Murase S; Takagi JS; Higashi Y; Imaishi H; Yumoto N; Tokushige M
    Biochem Biophys Res Commun; 1991 May; 177(1):414-9. PubMed ID: 2043125
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutagenic investigation of conserved functional amino acids in Escherichia coli L-aspartase.
    Saribaş AS; Schindler JF; Viola RE
    J Biol Chem; 1994 Mar; 269(9):6313-9. PubMed ID: 8119980
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assignment of catalytically essential cysteine residues in aspartase by selective chemical modification with N-(7-dimethylamino-4-methylcoumarynyl)maleimide.
    Ida N; Tokushige M
    J Biochem; 1985 Sep; 98(3):793-7. PubMed ID: 3910645
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fumaraldehydic acid-induced inactivation of aspartase.
    Higashi Y; Ida N; Tokushige M
    Biochem Int; 1988 Jul; 17(1):103-9. PubMed ID: 3142474
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structure of thermostable aspartase from Bacillus sp. YM55-1: structure-based exploration of functional sites in the aspartase family.
    Fujii T; Sakai H; Kawata Y; Hata Y
    J Mol Biol; 2003 May; 328(3):635-54. PubMed ID: 12706722
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancement of the stability and activity of aspartase by random and site-directed mutagenesis.
    Zhang HY; Zhang J; Lin L; Du WY; Lu J
    Biochem Biophys Res Commun; 1993 Apr; 192(1):15-21. PubMed ID: 8476416
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recovery of catalytic activity from an inactive aggregated mutant of l-aspartase.
    Jayasekera MM; Viola RE
    Biochem Biophys Res Commun; 1999 Oct; 264(2):596-600. PubMed ID: 10529408
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aspartase/fumarase superfamily: a common catalytic strategy involving general base-catalyzed formation of a highly stabilized aci-carboxylate intermediate.
    Puthan Veetil V; Fibriansah G; Raj H; Thunnissen AM; Poelarends GJ
    Biochemistry; 2012 May; 51(21):4237-43. PubMed ID: 22551392
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studies on aspartase. II. Role of sulfhydryl groups in aspartase from Escherichia coli.
    Mizuta K; Tokushige M
    Biochim Biophys Acta; 1975 Sep; 403(1):221-31. PubMed ID: 240429
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancement of catalytic activity by gene truncation: activation of L-aspartase from Escherichia coli.
    Jayasekera MM; Saribaş AS; Viola RE
    Biochem Biophys Res Commun; 1997 Sep; 238(2):411-4. PubMed ID: 9299522
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of three types of aspartase activated by site-directed mutagenesis, limited proteolysis, and acetylation.
    Murase S; Yumoto N
    J Biochem; 1993 Nov; 114(5):735-9. PubMed ID: 8113229
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical modification of essential histidine residues in aspartase with diethylpyrocarbonate.
    Ida N; Tokushige M
    J Biochem; 1984 Nov; 96(5):1315-21. PubMed ID: 6396297
    [TBL] [Abstract][Full Text] [Related]  

  • 19. L-aspartase: new tricks from an old enzyme.
    Viola RE
    Adv Enzymol Relat Areas Mol Biol; 2000; 74():295-341. PubMed ID: 10800598
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Site-directed mutagenesis of cysteinyl residues in aspartase of Escherichia coli.
    Chen HH; Chen JT; Tsai H
    Ann N Y Acad Sci; 1996 Oct; 799():70-3. PubMed ID: 8958076
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.