These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 7893673)
1. N5-methylasparagine and energy-transfer efficiency in C-phycocyanin. Thomas BA; McMahon LP; Klotz AV Biochemistry; 1995 Mar; 34(11):3758-70. PubMed ID: 7893673 [TBL] [Abstract][Full Text] [Related]
2. Phycobiliprotein methylation. Effect of the gamma-N-methylasparagine residue on energy transfer in phycocyanin and the phycobilisome. Swanson RV; Glazer AN J Mol Biol; 1990 Aug; 214(3):787-96. PubMed ID: 2117667 [TBL] [Abstract][Full Text] [Related]
3. Direct single-molecule measurements of phycocyanobilin photophysics in monomeric C-phycocyanin. Squires AH; Moerner WE Proc Natl Acad Sci U S A; 2017 Sep; 114(37):9779-9784. PubMed ID: 28847963 [TBL] [Abstract][Full Text] [Related]
4. Deconvolution of C-phycocyanin beta-84 and beta-155 chromophore absorption and fluorescence spectra of cyanobacterium Mastigocladus laminosus. Demidov AA; Mimuro M Biophys J; 1995 Apr; 68(4):1500-6. PubMed ID: 7787035 [TBL] [Abstract][Full Text] [Related]
5. Isolation and localization of N4-methylasparagine in phycobiliproteins from the cyanobacterium Mastigocladus laminosus. Rümbeli R; Suter F; Wirth M; Sidler W; Zuber H Biol Chem Hoppe Seyler; 1987 Oct; 368(10):1401-6. PubMed ID: 3122783 [TBL] [Abstract][Full Text] [Related]
6. Crystal structure analysis and refinement at 2.5 A of hexameric C-phycocyanin from the cyanobacterium Agmenellum quadruplicatum. The molecular model and its implications for light-harvesting. Schirmer T; Huber R; Schneider M; Bode W; Miller M; Hackert ML J Mol Biol; 1986 Apr; 188(4):651-76. PubMed ID: 3090271 [TBL] [Abstract][Full Text] [Related]
7. Energy transfer in monomeric phycoerythrocyanin. Zehetmayer P; Kupka M; Scheer H; Zumbusch A Biochim Biophys Acta; 2004 Jan; 1608(1):35-44. PubMed ID: 14741583 [TBL] [Abstract][Full Text] [Related]
8. Cyanobacterial phycobilisomes. Characterization of the phycobilisomes of Synechococcus sp. 6301. Yamanaka G; Glazer AN; Williams RC J Biol Chem; 1978 Nov; 253(22):8303-10. PubMed ID: 101538 [TBL] [Abstract][Full Text] [Related]
9. Phycoerythrin-phycocyanin aggregates and phycoerythrin aggregates from phycobilisomes of the marine red alga Polysiphonia urceolata. Zhao M; Sun L; Fu X; Chen M Int J Biol Macromol; 2019 Apr; 126():685-696. PubMed ID: 30557646 [TBL] [Abstract][Full Text] [Related]
10. Under light limiting growth, CpcB lyase null mutants of the Cyanobacterium Synechococcus sp. PCC 7002 are capable of producing pigmented beta phycocyanin but with altered chromophore function. Derks AK; Vasiliev S; Bruce D Biochemistry; 2008 Nov; 47(45):11877-84. PubMed ID: 18925744 [TBL] [Abstract][Full Text] [Related]
11. Crystal structure of C-phycocyanin from Cyanidium caldarium provides a new perspective on phycobilisome assembly. Stec B; Troxler RF; Teeter MM Biophys J; 1999 Jun; 76(6):2912-21. PubMed ID: 10354419 [TBL] [Abstract][Full Text] [Related]
12. Cyanobacterial phycobilisomes. Phycocyanin assembly in the rod substructures of anabaena variabilis phycobilisomes. Yu MH; Glazer AN; Williams RC J Biol Chem; 1981 Dec; 256(24):13130-6. PubMed ID: 6796581 [TBL] [Abstract][Full Text] [Related]
13. Spectroscopic study of the light-harvesting protein C-phycocyanin associated with colorless linker peptides. Pizarro SA; Sauer K Photochem Photobiol; 2001 May; 73(5):556-63. PubMed ID: 11367580 [TBL] [Abstract][Full Text] [Related]
14. Cyanobacterial phycobilisomes: Selective dissociation monitored by fluorescence and circular dichroism. Rigbi M; Rosinski J; Siegelman HW; Sutherland JC Proc Natl Acad Sci U S A; 1980 Apr; 77(4):1961-5. PubMed ID: 16592802 [TBL] [Abstract][Full Text] [Related]
15. Further evidence for a phycobilisome model from selective dissociation, fluorescence emission, immunoprecipitation, and electron microscopy. Gantt E; Lipschultz CA; Zilinskas B Biochim Biophys Acta; 1976 May; 430(2):375-88. PubMed ID: 1276188 [TBL] [Abstract][Full Text] [Related]
16. A semiempirical approach to the intra-phycocyanin and inter-phycocyanin fluorescence resonance energy-transfer pathways in phycobilisomes. Matamala AR; Almonacid DE; Figueroa MF; Martínez-Oyanedel J; Bunster MC J Comput Chem; 2007 May; 28(7):1200-7. PubMed ID: 17299727 [TBL] [Abstract][Full Text] [Related]
18. Orientation and linear dichroism of Mastigocladus laminosus phycocyanin trimer and Nostoc sp. phycocyanin dodecamer in stretched poly(vinyl alcohol) films. Juszczak LJ; Zilinskas BA; Geacintov NE; Breton J; Sauer K Biochim Biophys Acta; 1991 Jul; 1058(3):363-73. PubMed ID: 1905956 [TBL] [Abstract][Full Text] [Related]
19. Reconstitution of an allophycocyanin trimer complex containing the C-terminal 21-23 kDa domain of the core-membrane linker polypeptide Lcm. Gottschalk L; Lottspeich F; Scheer H Z Naturforsch C J Biosci; 1994; 49(5-6):331-6. PubMed ID: 8060459 [TBL] [Abstract][Full Text] [Related]
20. Resonance Raman spectra of phycocyanin, allophycocyanin and phycobilisomes from blue-green alga Anacystis nidulans. Szalontai B; Gombos Z; Csizmadia V Biochem Biophys Res Commun; 1985 Jul; 130(1):358-63. PubMed ID: 3927904 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]