BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 7893699)

  • 1. The catalytic core of peptidylglycine alpha-hydroxylating monooxygenase: investigation by site-directed mutagenesis, Cu X-ray absorption spectroscopy, and electron paramagnetic resonance.
    Eipper BA; Quon AS; Mains RE; Boswell JS; Blackburn NJ
    Biochemistry; 1995 Mar; 34(9):2857-65. PubMed ID: 7893699
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The catalytic role of the copper ligand H172 of peptidylglycine alpha-hydroxylating monooxygenase (PHM): a spectroscopic study of the H172A mutant.
    Jaron S; Mains RE; Eipper BA; Blackburn NJ
    Biochemistry; 2002 Nov; 41(44):13274-82. PubMed ID: 12403629
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The catalytic copper of peptidylglycine alpha-hydroxylating monooxygenase also plays a critical structural role.
    Siebert X; Eipper BA; Mains RE; Prigge ST; Blackburn NJ; Amzel LM
    Biophys J; 2005 Nov; 89(5):3312-9. PubMed ID: 16100265
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanistic investigation of peptidylglycine alpha-hydroxylating monooxygenase via intrinsic tryptophan fluorescence and mutagenesis.
    Bell J; El Meskini R; D'Amato D; Mains RE; Eipper BA
    Biochemistry; 2003 Jun; 42(23):7133-42. PubMed ID: 12795609
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxygen activation by the noncoupled binuclear copper site in peptidylglycine alpha-hydroxylating monooxygenase. Spectroscopic definition of the resting sites and the putative CuIIM-OOH intermediate.
    Chen P; Bell J; Eipper BA; Solomon EI
    Biochemistry; 2004 May; 43(19):5735-47. PubMed ID: 15134448
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Peptidylglycine alpha-hydroxylating monooxygenase: active site residues, disulfide linkages, and a two-domain model of the catalytic core.
    Kolhekar AS; Keutmann HT; Mains RE; Quon AS; Eipper BA
    Biochemistry; 1997 Sep; 36(36):10901-9. PubMed ID: 9283080
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A copper-methionine interaction controls the pH-dependent activation of peptidylglycine monooxygenase.
    Bauman AT; Broers BA; Kline CD; Blackburn NJ
    Biochemistry; 2011 Dec; 50(50):10819-28. PubMed ID: 22080626
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amidation of bioactive peptides: the structure of peptidylglycine alpha-hydroxylating monooxygenase.
    Prigge ST; Kolhekar AS; Eipper BA; Mains RE; Amzel LM
    Science; 1997 Nov; 278(5341):1300-5. PubMed ID: 9360928
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Binding of copper and silver to single-site variants of peptidylglycine monooxygenase reveals the structure and chemistry of the individual metal centers.
    Chauhan S; Kline CD; Mayfield M; Blackburn NJ
    Biochemistry; 2014 Feb; 53(6):1069-80. PubMed ID: 24471980
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Substrate-mediated electron transfer in peptidylglycine alpha-hydroxylating monooxygenase.
    Prigge ST; Kolhekar AS; Eipper BA; Mains RE; Amzel LM
    Nat Struct Biol; 1999 Oct; 6(10):976-83. PubMed ID: 10504734
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxygen and hydrogen isotope effects in an active site tyrosine to phenylalanine mutant of peptidylglycine alpha-hydroxylating monooxygenase: mechanistic implications.
    Francisco WA; Blackburn NJ; Klinman JP
    Biochemistry; 2003 Feb; 42(7):1813-9. PubMed ID: 12590568
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Does superoxide channel between the copper centers in peptidylglycine monooxygenase? A new mechanism based on carbon monoxide reactivity.
    Jaron S; Blackburn NJ
    Biochemistry; 1999 Nov; 38(46):15086-96. PubMed ID: 10563791
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxygen activation by the noncoupled binuclear copper site in peptidylglycine alpha-hydroxylating monooxygenase. Reaction mechanism and role of the noncoupled nature of the active site.
    Chen P; Solomon EI
    J Am Chem Soc; 2004 Apr; 126(15):4991-5000. PubMed ID: 15080705
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural investigations on the coordination environment of the active-site copper centers of recombinant bifunctional peptidylglycine alpha-amidating enzyme.
    Boswell JS; Reedy BJ; Kulathila R; Merkler D; Blackburn NJ
    Biochemistry; 1996 Sep; 35(38):12241-50. PubMed ID: 8823157
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New insights into copper monooxygenases and peptide amidation: structure, mechanism and function.
    Prigge ST; Mains RE; Eipper BA; Amzel LM
    Cell Mol Life Sci; 2000 Aug; 57(8-9):1236-59. PubMed ID: 11028916
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catalytic M Center of Copper Monooxygenases Probed by Rational Design. Effects of Selenomethionine and Histidine Substitution on Structure and Reactivity.
    Alwan KB; Welch EF; Blackburn NJ
    Biochemistry; 2019 Nov; 58(44):4436-4446. PubMed ID: 31626532
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coordination of peroxide to the Cu(M) center of peptidylglycine α-hydroxylating monooxygenase (PHM): structural and computational study.
    Rudzka K; Moreno DM; Eipper B; Mains R; Estrin DA; Amzel LM
    J Biol Inorg Chem; 2013 Feb; 18(2):223-232. PubMed ID: 23247335
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long distance electron-transfer mechanism in peptidylglycine alpha-hydroxylating monooxygenase: a perfect fitting for a water bridge.
    de la Lande A; Martí S; Parisel O; Moliner V
    J Am Chem Soc; 2007 Sep; 129(38):11700-7. PubMed ID: 17764178
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stopped-Flow Studies of the Reduction of the Copper Centers Suggest a Bifurcated Electron Transfer Pathway in Peptidylglycine Monooxygenase.
    Chauhan S; Hosseinzadeh P; Lu Y; Blackburn NJ
    Biochemistry; 2016 Apr; 55(13):2008-21. PubMed ID: 26982589
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Active site models for the Cu(A) site of peptidylglycine α-hydroxylating monooxygenase and dopamine β-monooxygenase.
    Kunishita A; Ertem MZ; Okubo Y; Tano T; Sugimoto H; Ohkubo K; Fujieda N; Fukuzumi S; Cramer CJ; Itoh S
    Inorg Chem; 2012 Sep; 51(17):9465-80. PubMed ID: 22908844
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.