BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 7893725)

  • 1. Substrate specificity and kinetics of thylakoid phosphoprotein phosphatase reactions.
    Cheng L; Spangfort MD; Allen JF
    Biochim Biophys Acta; 1994 Nov; 1188(1-2):151-7. PubMed ID: 7893725
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphopeptides as substrates for thylakoid protein phosphatase activity.
    Sun G; Sarath G; Markwell J
    Arch Biochem Biophys; 1993 Aug; 304(2):490-5. PubMed ID: 8394059
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chloroplast thylakoid protein phosphatase reactions are redox-independent and kinetically heterogeneous.
    Silverstein T; Cheng L; Allen JF
    FEBS Lett; 1993 Nov; 334(1):101-5. PubMed ID: 8224208
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Purification of a protein phosphatase from chloroplast stroma capable of dephosphorylating the light-harvesting complex-II.
    Hammer MF; Markwell J; Sarath G
    Plant Physiol; 1997 Jan; 113(1):227-33. PubMed ID: 9064687
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chloroplast phosphoproteins. Evidence for a thylakoid-bound phosphoprotein phosphatase.
    Bennett J
    Eur J Biochem; 1980 Feb; 104(1):85-9. PubMed ID: 6245872
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A cyclophilin-regulated PP2A-like protein phosphatase in thylakoid membranes of plant chloroplasts.
    Vener AV; Rokka A; Fulgosi H; Andersson B; Herrmann RG
    Biochemistry; 1999 Nov; 38(45):14955-65. PubMed ID: 10555977
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Substrate specificity of Ca(2+)/calmodulin-dependent protein kinase phosphatase: kinetic studies using synthetic phosphopeptides as model substrates.
    Ishida A; Shigeri Y; Tatsu Y; Endo Y; Kameshita I; Okuno S; Kitani T; Takeuchi M; Yumoto N; Fujisawa H
    J Biochem; 2001 May; 129(5):745-53. PubMed ID: 11328597
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tandem mass spectrometry identifies sites of three post-translational modifications of spinach light-harvesting chlorophyll protein II. Proteolytic cleavage, acetylation, and phosphorylation.
    Michel H; Griffin PR; Shabanowitz J; Hunt DF; Bennett J
    J Biol Chem; 1991 Sep; 266(26):17584-91. PubMed ID: 1894641
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dephosphorylation of photosystem II reaction center proteins in plant photosynthetic membranes as an immediate response to abrupt elevation of temperature.
    Rokka A; Aro EM; Herrmann RG; Andersson B; Vener AV
    Plant Physiol; 2000 Aug; 123(4):1525-36. PubMed ID: 10938368
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determinants for substrate specificity of the bacterial PP2C protein phosphatase tPphA from Thermosynechococcus elongatus.
    Su J; Forchhammer K
    FEBS J; 2013 Jan; 280(2):694-707. PubMed ID: 22212593
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dephosphorylation of Ser-137 in DARPP-32 by protein phosphatases 2A and 2C: different roles in vitro and in striatonigral neurons.
    Desdouits F; Siciliano JC; Nairn AC; Greengard P; Girault JA
    Biochem J; 1998 Feb; 330 ( Pt 1)(Pt 1):211-6. PubMed ID: 9461512
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural Mechanism Underlying the Specific Recognition between the Arabidopsis State-Transition Phosphatase TAP38/PPH1 and Phosphorylated Light-Harvesting Complex Protein Lhcb1.
    Wei X; Guo J; Li M; Liu Z
    Plant Cell; 2015 Apr; 27(4):1113-27. PubMed ID: 25888588
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Substrate specificity of the human protein phosphatase 2Cdelta, Wip1.
    Yamaguchi H; Minopoli G; Demidov ON; Chatterjee DK; Anderson CW; Durell SR; Appella E
    Biochemistry; 2005 Apr; 44(14):5285-94. PubMed ID: 15807522
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dephosphorylation of the thylakoid membrane light-harvesting complex-II by a stromal protein phosphatase.
    Hammer MF; Sarath G; Markwell J
    Photosynth Res; 1995 Sep; 45(3):195-201. PubMed ID: 24301531
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An investigation of the substrate specificity of protein phosphatase 2C using synthetic peptide substrates; comparison with protein phosphatase 2A.
    Donella Deana A; Mac Gowan CH; Cohen P; Marchiori F; Meyer HE; Pinna LA
    Biochim Biophys Acta; 1990 Feb; 1051(2):199-202. PubMed ID: 2155667
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plant protein phosphatases. Subcellular distribution, detection of protein phosphatase 2C and identification of protein phosphatase 2A as the major quinate dehydrogenase phosphatase.
    MacKintosh C; Coggins J; Cohen P
    Biochem J; 1991 Feb; 273 ( Pt 3)(Pt 3):733-8. PubMed ID: 1847622
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dopamine- and cAMP-regulated phosphoprotein DARPP-32: phosphorylation of Ser-137 by casein kinase I inhibits dephosphorylation of Thr-34 by calcineurin.
    Desdouits F; Siciliano JC; Greengard P; Girault JA
    Proc Natl Acad Sci U S A; 1995 Mar; 92(7):2682-5. PubMed ID: 7708705
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A study of substrate specificity for a CTD phosphatase, SCP1, by proteomic screening of binding partners.
    Kim YJ; Bahk YY
    Biochem Biophys Res Commun; 2014 May; 448(2):189-94. PubMed ID: 24769477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Specific dephosphorylation by phosphatases 1 and 2A of a nuclear protein structurally and immunologically related to nucleolin. Possible influence on the regulation of rRNA synthesis.
    Schneider HR; Mieskes G; Issinger OG
    Eur J Biochem; 1989 Mar; 180(2):449-55. PubMed ID: 2538332
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dephosphorylation of protein kinase C substrates, neurogranin, neuromodulin, and MARCKS, by calcineurin and protein phosphatases 1 and 2A.
    Seki K; Chen HC; Huang KP
    Arch Biochem Biophys; 1995 Feb; 316(2):673-9. PubMed ID: 7864622
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.