BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 7893729)

  • 21. Carboxyatractylate-sensitive uncoupling in liver mitochondria from ground squirrels during hibernation and arousal.
    Brustovetsky NN; Amerkanov ZG; Yegorova ME; Mokhova EN; Skulachev VP
    FEBS Lett; 1990 Oct; 272(1-2):190-2. PubMed ID: 2226831
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fatty acid-induced Ca(2+)-dependent uncoupling and activation of external pathway of NADH oxidation are coupled to cyclosporin A-sensitive mitochondrial permeability transition.
    Starkov AA; Markova OV; Mokhova EN; Arrigoni-Martelli E; Bobyleva VA
    Biochem Mol Biol Int; 1994 Apr; 32(6):1147-55. PubMed ID: 8061632
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Anandamide inhibits oxidative phosphorylation in isolated liver mitochondria.
    Zaccagnino P; Corcelli A; Baronio M; Lorusso M
    FEBS Lett; 2011 Jan; 585(2):429-34. PubMed ID: 21187088
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Uncoupling of oxidative phosphorylation. 1. Protonophoric effects account only partially for uncoupling.
    Luvisetto S; Pietrobon D; Azzone GF
    Biochemistry; 1987 Nov; 26(23):7332-8. PubMed ID: 2827753
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The lipophilic weak base (Z)-5-methyl-2-[2-(1-naphthyl)ethenyl]-4-piperidinopyridine (AU-1421) is a potent protonophore type cationic uncoupler of oxidative phosphorylation in mitochondria.
    Nagamune H; Fukushima Y; Takada J; Yoshida K; Unami A; Shimooka T; Terada H
    Biochim Biophys Acta; 1993 Mar; 1141(2-3):231-7. PubMed ID: 8382953
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quantitative relationship between protonophoric and uncoupling activities of substituted phenols.
    Miyoshi H; Nishioka T; Fujita T
    Biochim Biophys Acta; 1987 Apr; 891(2):194-204. PubMed ID: 3828329
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Comparative Study of the Action of Protonophore Uncouplers and Decoupling Agents as Inducers of Free Respiration in Mitochondria in States 3 and 4: Theoretical and Experimental Approaches.
    Samartsev VN; Semenova AA; Dubinin MV
    Cell Biochem Biophys; 2020 Jun; 78(2):203-216. PubMed ID: 32367259
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Intramitochondrial phospholipase activity and the effects of Ca2+ plus N-ethylmaleimide on mitochondrial function.
    Pfeiffer DR; Schmid PC; Beatrice MC; Schmid HH
    J Biol Chem; 1979 Nov; 254(22):11485-94. PubMed ID: 40983
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The mitochondria-targeted derivative of the classical uncoupler of oxidative phosphorylation carbonyl cyanide m-chlorophenylhydrazone is an effective mitochondrial recoupler.
    Iaubasarova IR; Khailova LS; Firsov AM; Grivennikova VG; Kirsanov RS; Korshunova GA; Kotova EA; Antonenko YN
    PLoS One; 2020; 15(12):e0244499. PubMed ID: 33378414
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Uncoupling and specific inhibition of phosphoryl transfer reactions in mitochondria by antibiotic A20668.
    Reed PW; Lardy HA
    J Biol Chem; 1975 May; 250(10):3704-8. PubMed ID: 165181
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multiple effects of 2,2',5,5'-tetrachlorobiphenyl on oxidative phosphorylation in rat liver mitochondria.
    Mildaziene V; Nauciene Z; Baniene R; Grigiene J
    Toxicol Sci; 2002 Feb; 65(2):220-7. PubMed ID: 11812926
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Effect of heliomycin on the respiration and oxidative phosphorylation of the liver mitochondria of the rat].
    Konoshenko GI; Bulgakova VG; Polin AN
    Antibiotiki; 1983 Mar; 28(3):192-4. PubMed ID: 6305259
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The mechanism of stimulation of respiration by fatty acids in isolated hepatocytes.
    Nobes CD; Hay WW; Brand MD
    J Biol Chem; 1990 Aug; 265(22):12910-5. PubMed ID: 2376580
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Inhibition by perhexiline of oxidative phosphorylation and the beta-oxidation of fatty acids: possible role in pseudoalcoholic liver lesions.
    Deschamps D; DeBeco V; Fisch C; Fromenty B; Guillouzo A; Pessayre D
    Hepatology; 1994 Apr; 19(4):948-61. PubMed ID: 8138270
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Spegazzinine, a new inhibitor of mitochondrial oxidative phosphorylation.
    Roveri OA; Vallejos RH
    Biochim Biophys Acta; 1974 Feb; 333(2):187-94. PubMed ID: 19400031
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pentamidine is an uncoupler of oxidative phosphorylation in rat liver mitochondria.
    Moreno SN
    Arch Biochem Biophys; 1996 Feb; 326(1):15-20. PubMed ID: 8579363
    [TBL] [Abstract][Full Text] [Related]  

  • 37. ATP synthase-mediated proton fluxes and phosphorylation in rat liver mitochondria: dependence on delta mu H.
    Zoratti M; Petronilli V; Azzone GF
    Biochim Biophys Acta; 1986 Aug; 851(1):123-35. PubMed ID: 2873837
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Increased respiration in skeletal muscle mitochondria from cold-acclimated ducklings: uncoupling effects of free fatty acids.
    Barré H; Nedergaard J; Cannon B
    Comp Biochem Physiol B; 1986; 85(2):343-8. PubMed ID: 3780184
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Free fatty acids decouple oxidative phosphorylation by dissipating intramembranal protons without inhibiting ATP synthesis driven by the proton electrochemical gradient.
    Rottenberg H; Steiner-Mordoch S
    FEBS Lett; 1986 Jul; 202(2):314-8. PubMed ID: 2873057
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The effect of temperature and chronic ethanol feeding on the proton electrochemical potential and phosphate potential in rat liver mitochondria.
    Rottenberg H; Robertson DE; Rubin E
    Biochim Biophys Acta; 1985 Aug; 809(1):1-10. PubMed ID: 2862912
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.