These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 7894592)

  • 1. Generation of alphoid DNA probes for fluorescence in situ hybridization (FISH) using the polymerase chain reaction.
    Lengauer C; Dunham I; Featherstone T; Cremer T
    Methods Mol Biol; 1994; 33():51-61. PubMed ID: 7894592
    [No Abstract]   [Full Text] [Related]  

  • 2. Alu- and L1-primed PCR-generated probes for nonisotopic in situ hybridization.
    Gosden J; Breen M; Lawson D
    Methods Mol Biol; 1994; 29():479-92. PubMed ID: 8032423
    [No Abstract]   [Full Text] [Related]  

  • 3. Reverse chromosome painting.
    Pedersen S; Hindkjaer J; Brandt CA; Bolund L; Kølvraa S
    Methods Mol Biol; 1994; 33():23-33. PubMed ID: 7534580
    [No Abstract]   [Full Text] [Related]  

  • 4. In situ hybridization using synthetic oligomers as probes for centromere and telomere repeats.
    Meyne J; Moyzis RK
    Methods Mol Biol; 1994; 33():63-74. PubMed ID: 7894593
    [No Abstract]   [Full Text] [Related]  

  • 5. Limit mobility fragments are suitable probes for in situ hybridization.
    Mascheretti S; Ronchetti E
    Eur J Histochem; 1996; 40(4):331-3. PubMed ID: 9116341
    [No Abstract]   [Full Text] [Related]  

  • 6. Primed in situ (PRINS) labeling of DNA.
    Hindkjaer J; Koch J; Mogensen J; Kølvraa S; Bolund L
    Methods Mol Biol; 1994; 33():95-107. PubMed ID: 7894596
    [No Abstract]   [Full Text] [Related]  

  • 7. Polymerase Chain reaction generated probes for fluorescence in situ hybridization.
    Dupont JM; Lebbar A; Dupuy O; Frydman N; Letessier D; Auvinet P; Rabineau D
    Morphologie; 1998; 82(257):21-4. PubMed ID: 11928124
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid generation of region specific probes by chromosome microdissection and their application.
    Meltzer PS; Guan XY; Burgess A; Trent JM
    Nat Genet; 1992 Apr; 1(1):24-8. PubMed ID: 1301994
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FISH of Alu-PCR-amplified YAC clones and applications in tumor cytogenetics.
    Lengauer C; Speicher MR; Cremer T
    Methods Mol Biol; 1994; 33():85-94. PubMed ID: 7894595
    [No Abstract]   [Full Text] [Related]  

  • 10. Polymerase chain reaction-based suppression of repetitive sequences in whole chromosome painting probes for FISH.
    Dugan LC; Pattee MS; Williams J; Eklund M; Sorensen K; Bedford JS; Christian AT
    Chromosome Res; 2005; 13(1):27-32. PubMed ID: 15791409
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amplification and detection of a Y-chromosome DNA sequence by fluorescence in situ polymerase chain reaction and flow cytometry using cells in suspension.
    Timm EA; Podniesinski E; Duckett L; Cardott J; Stewart CC
    Cytometry; 1995 Sep; 22(3):250-5. PubMed ID: 8556957
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation of human chromosomal painting probes from somatic cell hybrids.
    Archidiacono N; Antonacci R; Forabosco A; Rocchi M
    Methods Mol Biol; 1994; 33():1-13. PubMed ID: 7894572
    [No Abstract]   [Full Text] [Related]  

  • 13. A method for generating selective DNA probes for the analysis of C-negative regions in human chromosomes.
    Morozkin ES; Loseva EM; Karamysheva TV; Babenko VN; Laktionov PP; Vlassov VV; Rubtsov NB
    Cytogenet Genome Res; 2011; 135(1):1-11. PubMed ID: 21811056
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mapping human YAC clones by fluorescence in situ hybridization using Alu-PCR from single yeast colonies.
    Baldini A; Lindsay EA
    Methods Mol Biol; 1994; 33():75-84. PubMed ID: 7894594
    [No Abstract]   [Full Text] [Related]  

  • 15. A practical strategy for detection of major chromosome aneuploidies using ratio-mixing fluorescence in situ hybridization.
    Mohaddes SM; Boyd E; Morris A; Morrison N; Connor JM
    Mol Cell Probes; 1996 Apr; 10(2):147-54. PubMed ID: 8737399
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Padlock probes reveal single-nucleotide differences, parent of origin and in situ distribution of centromeric sequences in human chromosomes 13 and 21.
    Nilsson M; Krejci K; Koch J; Kwiatkowski M; Gustavsson P; Landegren U
    Nat Genet; 1997 Jul; 16(3):252-5. PubMed ID: 9207789
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation and characterization of salmonid telomeric and centromeric satellite DNA sequences.
    Saito Y; Edpalina RR; Abe S
    Genetica; 2007 Oct; 131(2):157-66. PubMed ID: 17180439
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The impact of StuI digestion in situ on FISH to human chromosomes with satellite DNA probes.
    Nieddu M; Pichiri G; Melis V; Mezzanotte R
    Heredity (Edinb); 2003 Apr; 90(4):298-301. PubMed ID: 12692582
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chromosome specific paints from a high resolution flow karyotype of the mouse.
    Rabbitts P; Impey H; Heppell-Parton A; Langford C; Tease C; Lowe N; Bailey D; Ferguson-Smith M; Carter N
    Nat Genet; 1995 Apr; 9(4):369-75. PubMed ID: 7795642
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid identification of marker chromosomes by in situ hybridization under different stringency conditions.
    Vorsanova SG; Yurov YB; Soloviev IV; Demidova IA; Malet P
    Anal Cell Pathol; 1994 Oct; 7(3):251-8. PubMed ID: 7848878
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.