BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 7894701)

  • 1. Rhizobium leguminosarum nodulation gene (nod) expression is lowered by an allele-specific mutation in the dicarboxylate transport gene dctB.
    Mavridou A; Barny MA; Poole P; Plaskitt K; Davies AE; Johnston AW; Downie JA
    Microbiology (Reading); 1995 Jan; 141 ( Pt 1)():103-11. PubMed ID: 7894701
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Roles of DctA and DctB in signal detection by the dicarboxylic acid transport system of Rhizobium leguminosarum.
    Reid CJ; Poole PS
    J Bacteriol; 1998 May; 180(10):2660-9. PubMed ID: 9573150
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inactivation and regulation of the aerobic C(4)-dicarboxylate transport (dctA) gene of Escherichia coli.
    Davies SJ; Golby P; Omrani D; Broad SA; Harrington VL; Guest JR; Kelly DJ; Andrews SC
    J Bacteriol; 1999 Sep; 181(18):5624-35. PubMed ID: 10482502
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of C4-dicarboxylate transport genes in Rhizobium meliloti.
    Yarosh OK; Charles TC; Finan TM
    Mol Microbiol; 1989 Jun; 3(6):813-23. PubMed ID: 2546011
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of the C4-dicarboxylate transport genes of Rhizobium meliloti: nucleotide sequence and deduced products of dctA, dctB, and dctD.
    Watson RJ
    Mol Plant Microbe Interact; 1990; 3(3):174-81. PubMed ID: 2134335
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aspartate transport by the Dct system in Rhizobium leguminosarum negatively affects nitrogen-regulated operons.
    Reid CJ; Walshaw DL; Poole PS
    Microbiology (Reading); 1996 Sep; 142 ( Pt 9)():2603-12. PubMed ID: 8828229
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Negative regulation of sigma 54-dependent dctA expression by the transcriptional activator DctD.
    Labes M; Finan TM
    J Bacteriol; 1993 May; 175(9):2674-81. PubMed ID: 8478332
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulatory functions of the three nodD genes of Rhizobium leguminosarum biovar phaseoli.
    Davis EO; Johnston AW
    Mol Microbiol; 1990 Jun; 4(6):933-41. PubMed ID: 2120543
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extension of host range of Rhizobium leguminosarum bv. trifolii caused by point mutations in nodD that result in alterations in regulatory function and recognition of inducer molecules.
    McIver J; Djordjevic MA; Weinman JJ; Bender GL; Rolfe BG
    Mol Plant Microbe Interact; 1989; 2(3):97-106. PubMed ID: 2520822
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular cloning and genetic organization of C4-dicarboxylate transport genes from Rhizobium leguminosarum.
    Ronson CW; Astwood PM; Downie JA
    J Bacteriol; 1984 Dec; 160(3):903-9. PubMed ID: 6094513
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic analysis and regulation of the Rhizobium meliloti genes controlling C4-dicarboxylic acid transport.
    Wang YP; Birkenhead K; Boesten B; Manian S; O'Gara F
    Gene; 1989 Dec; 85(1):135-44. PubMed ID: 2695394
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification and sequence analysis of the Rhizobium meliloti dctA gene encoding the C4-dicarboxylate carrier.
    Engelke T; Jording D; Kapp D; PĆ¼hler A
    J Bacteriol; 1989 Oct; 171(10):5551-60. PubMed ID: 2551890
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular characterization and regulation of the rhizosphere-expressed genes rhiABCR that can influence nodulation by Rhizobium leguminosarum biovar viciae.
    Cubo MT; Economou A; Murphy G; Johnston AW; Downie JA
    J Bacteriol; 1992 Jun; 174(12):4026-35. PubMed ID: 1597418
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation and characterization of Azospirillum lipoferum locus that complements Rhizobium meliloti dctA and dctB mutations.
    Tripathi AK; Mishra BM
    Can J Microbiol; 1996 May; 42(5):503-6. PubMed ID: 8640608
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification and characterization of the nodD gene in Rhizobium leguminosarum strain 1001.
    Squartini A; van Veen RJ; Regensburg-Tuink T; Hooykaas PJ; Nuti MP
    Mol Plant Microbe Interact; 1988 Mar; 1(3):145-9. PubMed ID: 2979909
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two C4-dicarboxylate transport systems in Rhizobium sp. NGR234: rhizobial dicarboxylate transport is essential for nitrogen fixation in tropical legume symbioses.
    van Slooten JC; Bhuvanasvari TV; Bardin S; Stanley J
    Mol Plant Microbe Interact; 1992; 5(2):179-86. PubMed ID: 1617199
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A HU-like gene mutation in Rhizobium leguminosarum bv. viciae affects the expression of nodulation genes.
    Li Q; Feng J; Hu HL; Chen XC; Li FQ; Hong GF
    Mol Microbiol; 2004 Feb; 51(3):861-71. PubMed ID: 14731285
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutants in the nodFEL promoter of Rhizobium leguminosarum bv. viciae reveal a role of individual nucleotides in transcriptional activation and protein binding.
    Okker RJ; Spaink HP; Lugtenberg BJ; Schlaman HR
    Arch Microbiol; 2001 Feb; 175(2):152-60. PubMed ID: 11285743
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two inverted repeats in the nodD promoter region are involved in nodD regulation in Rhizobium leguminosarum.
    Mao C; Downie JA; Hong G
    Gene; 1994 Jul; 145(1):87-90. PubMed ID: 8045429
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rhizobium meliloti and Rhizobium leguminosarum dctD gene products bind to tandem sites in an activation sequence located upstream of sigma 54-dependent dctA promoters.
    Ledebur H; Gu B; Sojda J; Nixon BT
    J Bacteriol; 1990 Jul; 172(7):3888-97. PubMed ID: 2193923
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.