These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 7894702)
1. Acquisition of azide-resistance by elevated SecA ATPase activity confers azide-resistance upon cell growth and protein translocation in Bacillus subtilis. Nakane A; Takamatsu H; Oguro A; Sadaie Y; Nakamura K; Yamane K Microbiology (Reading); 1995 Jan; 141 ( Pt 1)():113-21. PubMed ID: 7894702 [TBL] [Abstract][Full Text] [Related]
2. Mutations conferring resistance to azide in Escherichia coli occur primarily in the secA gene. Fortin Y; Phoenix P; Drapeau GR J Bacteriol; 1990 Nov; 172(11):6607-10. PubMed ID: 2146254 [TBL] [Abstract][Full Text] [Related]
3. Differential dependence of levansucrase and alpha-amylase secretion on SecA (Div) during the exponential phase of growth of Bacillus subtilis. Leloup L; Driessen AJ; Freudl R; Chambert R; Petit-Glatron MF J Bacteriol; 1999 Mar; 181(6):1820-6. PubMed ID: 10074074 [TBL] [Abstract][Full Text] [Related]
4. Lysine 106 of the putative catalytic ATP-binding site of the Bacillus subtilis SecA protein is required for functional complementation of Escherichia coli secA mutants in vivo. Klose M; Schimz KL; van der Wolk J; Driessen AJ; Freudl R J Biol Chem; 1993 Feb; 268(6):4504-10. PubMed ID: 8440733 [TBL] [Abstract][Full Text] [Related]
5. Suppression of signal sequence defects and azide resistance in Escherichia coli commonly result from the same mutations in secA. Huie JL; Silhavy TJ J Bacteriol; 1995 Jun; 177(12):3518-26. PubMed ID: 7768862 [TBL] [Abstract][Full Text] [Related]
6. In vivo and in vitro characterization of the secA gene product of Bacillus subtilis. Takamatsu H; Fuma S; Nakamura K; Sadaie Y; Shinkai A; Matsuyama S; Mizushima S; Yamane K J Bacteriol; 1992 Jul; 174(13):4308-16. PubMed ID: 1385592 [TBL] [Abstract][Full Text] [Related]
7. Azide-resistant mutants of Escherichia coli alter the SecA protein, an azide-sensitive component of the protein export machinery. Oliver DB; Cabelli RJ; Dolan KM; Jarosik GP Proc Natl Acad Sci U S A; 1990 Nov; 87(21):8227-31. PubMed ID: 2146683 [TBL] [Abstract][Full Text] [Related]
8. Isolation and characterization of a Bacillus subtilis secA mutant allele conferring resistance to sodium azide. Klein M; Hofmann B; Klose M; Freudl R FEMS Microbiol Lett; 1994 Dec; 124(3):393-7. PubMed ID: 7851746 [TBL] [Abstract][Full Text] [Related]
9. Characterization of a Bacillus subtilis SecA mutant protein deficient in translocation ATPase and release from the membrane. van der Wolk J; Klose M; Breukink E; Demel RA; de Kruijff B; Freudl R; Driessen AJ Mol Microbiol; 1993 Apr; 8(1):31-42. PubMed ID: 8497195 [TBL] [Abstract][Full Text] [Related]
10. A truncated Bacillus subtilis SecA protein consisting of the N-terminal 234 amino acid residues forms a complex with Escherichia coli SecA51(ts) protein and complements the protein translocation defect of the secA51 mutant. Takamatsu H; Nakane A; Oguro A; Sadaie Y; Nakamura K; Yamane K J Biochem; 1994 Dec; 116(6):1287-94. PubMed ID: 7706219 [TBL] [Abstract][Full Text] [Related]
11. Identification of the magnesium-binding domain of the high-affinity ATP-binding site of the Bacillus subtilis and Escherichia coli SecA protein. van der Wolk JP; Klose M; de Wit JG; den Blaauwen T; Freudl R; Driessen AJ J Biol Chem; 1995 Aug; 270(32):18975-82. PubMed ID: 7642557 [TBL] [Abstract][Full Text] [Related]
12. Isolation and characterization of a cDNA encoding the SecA protein from spinach chloroplasts. Evidence for azide resistance of Sec-dependent protein translocation across thylakoid membranes in spinach. Berghöfer J; Karnauchov I; Herrmann RG; Klösgen RB J Biol Chem; 1995 Aug; 270(31):18341-6. PubMed ID: 7629156 [TBL] [Abstract][Full Text] [Related]
13. Characterization of a potential catalytic residue, Asp-133, in the high affinity ATP-binding site of Escherichia coli SecA, translocation ATPase. Sato K; Mori H; Yoshida M; Mizushima S J Biol Chem; 1996 Jul; 271(29):17439-44. PubMed ID: 8663354 [TBL] [Abstract][Full Text] [Related]
14. Characterization of the secA gene of Streptomyces lividans encoding a protein translocase which complements and Escherichia coli mutant defective in the ATPase activity of SecA. Blanco J; Coque JJ; Martín JF Gene; 1996 Oct; 176(1-2):61-5. PubMed ID: 8918233 [TBL] [Abstract][Full Text] [Related]
15. The bacterial ATPase SecA functions as a monomer in protein translocation. Or E; Boyd D; Gon S; Beckwith J; Rapoport T J Biol Chem; 2005 Mar; 280(10):9097-105. PubMed ID: 15618215 [TBL] [Abstract][Full Text] [Related]
16. The catalytic cycle of the escherichia coli SecA ATPase comprises two distinct preprotein translocation events. van der Wolk JP; de Wit JG; Driessen AJ EMBO J; 1997 Dec; 16(24):7297-304. PubMed ID: 9405359 [TBL] [Abstract][Full Text] [Related]
17. The rapid degradation of mutant SecA protein in the Bacillus subtilis secA341 (ts) mutant causes a protein translocation defect in the cell. Takamatsu H; Nakane A; Sadaie Y; Nakamura K; Yamane K Biosci Biotechnol Biochem; 1994 Oct; 58(10):1845-50. PubMed ID: 7765510 [TBL] [Abstract][Full Text] [Related]
18. The secA inhibitor, azide, reversibly blocks the translocation of a subset of proteins across the chloroplast thylakoid membrane. Knott TG; Robinson C J Biol Chem; 1994 Mar; 269(11):7843-6. PubMed ID: 8132499 [TBL] [Abstract][Full Text] [Related]
19. Nucleotide binding activity of SecA homodimer is conformationally regulated by temperature and altered by prlD and azi mutations. Schmidt M; Ding H; Ramamurthy V; Mukerji I; Oliver D J Biol Chem; 2000 May; 275(20):15440-8. PubMed ID: 10747939 [TBL] [Abstract][Full Text] [Related]
20. secG and temperature modulate expression of azide-resistant and signal sequence suppressor phenotypes of Escherichia coli secA mutants. Ramamurthy V; Dapíc V; Oliver D J Bacteriol; 1998 Dec; 180(23):6419-23. PubMed ID: 9829959 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]