BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 7895265)

  • 21. The use of monoclonal antibodies in the study of the interaction between adrenal medullary cell membranes and chromaffin granules.
    Bohner K; Boons J; Gheuens J; Konings F; De Potter WP
    Biochem Biophys Res Commun; 1985 Dec; 133(3):1006-12. PubMed ID: 2417600
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quantitative analysis of exocytosis directly visualized in living chromaffin cells.
    Terakawa S; Fan JH; Kumakura K; Ohara-Imaizumi M
    Neurosci Lett; 1991 Feb; 123(1):82-6. PubMed ID: 2062457
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Calcium is released by exocytosis together with catecholamines from bovine adrenal medullary cells.
    von Grafenstein HR; Powis DA
    J Neurochem; 1989 Aug; 53(2):428-35. PubMed ID: 2746230
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Metorphamide, a novel endogenous adrenal opioid peptide, inhibits nicotine-induced secretion from bovine adrenal chromaffin cells.
    Marley PD; Mitchelhill KI; Livett BG
    Brain Res; 1986 Jan; 363(1):10-7. PubMed ID: 3947946
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pertussis toxin facilitates secretagogue-induced catecholamine release from cultured bovine adrenal chromaffin cells.
    Tanaka T; Yokohama H; Negishi M; Hayashi H; Ito S; Hayaishi O
    Biochem Biophys Res Commun; 1987 Apr; 144(2):907-14. PubMed ID: 3579947
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of metalloendoproteinase inhibitors on secretion and intracellular free calcium in bovine adrenal chromaffin cells.
    Harris B; Cheek TR; Burgoyne RD
    Biochim Biophys Acta; 1986 Oct; 889(1):1-5. PubMed ID: 3533161
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Punctate appearance of dopamine-beta-hydroxylase on the chromaffin cell surface reflects the fusion of individual chromaffin granules upon exocytosis.
    Wick PF; Trenkle JM; Holz RW
    Neuroscience; 1997 Oct; 80(3):847-60. PubMed ID: 9276499
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Membrane potential and catecholamine secretion by bovine adrenal chromaffin cells: use of tetraphenylphosphonium distribution and carbocyanine dye fluorescence.
    Friedman JE; Lelkes PI; Lavie E; Rosenheck K; Schneeweiss F; Schneider AS
    J Neurochem; 1985 May; 44(5):1391-402. PubMed ID: 3989537
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Affinity purified tetanus toxin binds to isolated chromaffin granules and inhibits catecholamine release in digitonin-permeabilized chromaffin cells.
    Lazarovici P; Fujita K; Contreras ML; DiOrio JP; Lelkes PI
    FEBS Lett; 1989 Aug; 253(1-2):121-8. PubMed ID: 2759237
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Freeze-fracture study of the chromaffin cell during exocytosis: evidence for connections between the plasma membrane and secretory granules and for movements of plasma membrane-associated particles.
    Aunis D; Hesketh JE; Devilliers G
    Cell Tissue Res; 1979 Apr; 197(3):433-41. PubMed ID: 455408
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Protein kinase C activation by phorbol esters induces chromaffin cell cortical filamentous actin disassembly and increases the initial rate of exocytosis in response to nicotinic receptor stimulation.
    Vitale ML; Rodríguez Del Castillo A; Trifaró JM
    Neuroscience; 1992 Nov; 51(2):463-74. PubMed ID: 1281530
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Intracellular pH and catecholamine secretion from bovine adrenal chromaffin cells.
    Kao LS; Ho MY; Cragoe EJ
    J Neurochem; 1991 Nov; 57(5):1656-60. PubMed ID: 1919580
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synergistic actions of Ca2+ and the phorbol ester TPA on K+-induced catecholamine release from bovine adrenal chromaffin cells.
    Brocklehurst KW; Pollard HB
    Biochem Biophys Res Commun; 1986 Nov; 140(3):990-8. PubMed ID: 3778497
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The chromaffin granule: recent studies leading to a functional model for exocytosis.
    Zinder O; Pollard HB
    Essays Neurochem Neuropharmacol; 1980; 4():125-62. PubMed ID: 6993206
    [No Abstract]   [Full Text] [Related]  

  • 35. Histamine stimulates exocytosis in a sub-population of bovine adrenal chromaffin cells.
    Pender N; Burgoyne RD
    Neurosci Lett; 1992 Sep; 144(1-2):207-10. PubMed ID: 1436704
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Internal pH of isolated chromaffin vesicles.
    Johnson RG; Scarpa A
    J Biol Chem; 1976 Apr; 251(7):2189-91. PubMed ID: 5444
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Immunolocalization of synexin (annexin VII) in adrenal chromaffin granules and chromaffin cells: evidence for a dynamic role in the secretory process.
    Kuijpers GA; Lee G; Pollard HB
    Cell Tissue Res; 1992 Aug; 269(2):323-30. PubMed ID: 1423500
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Regulation of the transmembrane potential of isolated chromaffin granules by ATP, ATP analogs, and external pH.
    Pollard HB; Zinder O; Hoffman PG; Nikodejevic O
    J Biol Chem; 1976 Aug; 251(15):4544-50. PubMed ID: 7561
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modes of secretagogue-induced [Ca(2+)](i) responses in individual chromaffin cells of the perfused rat adrenal medulla.
    Warashina A; Satoh Y
    Cell Calcium; 2001 Dec; 30(6):395-401. PubMed ID: 11728134
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Correlation of physical and morphological parameters with release of catecholamines, ATP, and protein from adrenal medulla chromaffin granules.
    Morris SJ; Schober R; Schultens HA
    Biochim Biophys Acta; 1977 Jan; 464(1):65-81. PubMed ID: 831794
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.