BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

652 related articles for article (PubMed ID: 7895366)

  • 1. Pyruvate dehydrogenase influences postischemic heart function.
    Lewandowski ED; White LT
    Circulation; 1995 Apr; 91(7):2071-9. PubMed ID: 7895366
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cytosolic redox state mediates postischemic response to pyruvate dehydrogenase stimulation.
    White LT; O'Donnell JM; Griffin J; Lewandowski ED
    Am J Physiol; 1999 Aug; 277(2):H626-34. PubMed ID: 10444488
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reduced substrate oxidation in postischemic myocardium: 13C and 31P NMR analyses.
    Lewandowski ED; Johnston DL
    Am J Physiol; 1990 May; 258(5 Pt 2):H1357-65. PubMed ID: 2337171
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fatty acid metabolism and contractile function in the reperfused myocardium. Multinuclear NMR studies of isolated rabbit hearts.
    Johnston DL; Lewandowski ED
    Circ Res; 1991 Mar; 68(3):714-25. PubMed ID: 1742864
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dichloroacetate improves postischemic function of hypertrophied rat hearts.
    Wambolt RB; Lopaschuk GD; Brownsey RW; Allard MF
    J Am Coll Cardiol; 2000 Oct; 36(4):1378-85. PubMed ID: 11028498
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cardiac responses to induced lactate oxidation: NMR analysis of metabolic equilibria.
    Lewandowski ED; Damico LA; White LT; Yu X
    Am J Physiol; 1995 Jul; 269(1 Pt 2):H160-8. PubMed ID: 7631845
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Substrate competition in postischemic myocardium. Effect of substrate availability during reperfusion on metabolic and contractile recovery in isolated rat hearts.
    Tamm C; Benzi R; Papageorgiou I; Tardy I; Lerch R
    Circ Res; 1994 Dec; 75(6):1103-12. PubMed ID: 7955147
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Substrate-dependent proton load and recovery of stunned hearts during pyruvate dehydrogenase stimulation.
    Griffin JL; White LT; Lewandowski ED
    Am J Physiol Heart Circ Physiol; 2000 Jul; 279(1):H361-7. PubMed ID: 10899076
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The functional recovery of post-ischemic myocardium requires glycolysis during early reperfusion.
    Jeremy RW; Ambrosio G; Pike MM; Jacobus WE; Becker LC
    J Mol Cell Cardiol; 1993 Mar; 25(3):261-76. PubMed ID: 8510169
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Postischemic Na(+)-K(+)-ATPase reactivation is delayed in the absence of glycolytic ATP in isolated rat hearts.
    Van Emous JG; Vleggeert-Lankamp CL; Nederhoff MG; Ruigrok TJ; Van Echteld CJ
    Am J Physiol Heart Circ Physiol; 2001 May; 280(5):H2189-95. PubMed ID: 11299221
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of inosine on glycolysis and contracture during myocardial ischemia.
    Lewandowski ED; Johnston DL; Roberts R
    Circ Res; 1991 Feb; 68(2):578-87. PubMed ID: 1991356
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fatty acid regulation of glucose metabolism in the intact beating rat heart assessed by carbon-13 NMR spectroscopy: the critical role of pyruvate dehydrogenase.
    Weiss RG; Chacko VP; Gerstenblith G
    J Mol Cell Cardiol; 1989 May; 21(5):469-78. PubMed ID: 2528640
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glucose requirement for postischemic recovery of perfused working heart.
    Mallet RT; Hartman DA; Bünger R
    Eur J Biochem; 1990 Mar; 188(2):481-93. PubMed ID: 2318214
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic heterogeneity of carbon substrate utilization in mammalian heart: NMR determinations of mitochondrial versus cytosolic compartmentation.
    Lewandowski ED
    Biochemistry; 1992 Sep; 31(37):8916-23. PubMed ID: 1390679
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acute effects of triiodothyronine on glucose and fatty acid metabolism during reperfusion of ischemic rat hearts.
    Liu Q; Clanachan AS; Lopaschuk GD
    Am J Physiol; 1998 Sep; 275(3):E392-9. PubMed ID: 9725804
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of dichloroacetate on mechanical recovery and oxidation of physiologic substrates after ischemia and reperfusion in the isolated heart.
    Barak C; Reed MK; Maniscalco SP; Sherry AD; Malloy CR; Jessen ME
    J Cardiovasc Pharmacol; 1998 Mar; 31(3):336-44. PubMed ID: 9514176
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dichloroacetate enhanced myocardial functional recovery post-ischemia : ATP and NADH recovery.
    Wahr JA; Olszanski D; Childs KF; Bolling SF
    J Surg Res; 1996 Jun; 63(1):220-4. PubMed ID: 8661201
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Administration of fructose 1,6-diphosphate during early reperfusion significantly improves recovery of contractile function in the postischemic heart.
    Takeuchi K; Cao-Danh H; Friehs I; Glynn P; D'Agostino D; Simplaceanu E; McGowan FX; del Nido PJ
    J Thorac Cardiovasc Surg; 1998 Aug; 116(2):335-43. PubMed ID: 9699588
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical versus isotopic equilibrium and the metabolic fate of glycolytic end products in the heart.
    Damico LA; White LT; Yu X; Lewandowski ED
    J Mol Cell Cardiol; 1996 May; 28(5):989-99. PubMed ID: 8762037
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High dietary sucrose triggers hyperinsulinemia, increases myocardial beta-oxidation, reduces glycolytic flux and delays post-ischemic contractile recovery.
    Gonsolin D; Couturier K; Garait B; Rondel S; Novel-Chaté V; Peltier S; Faure P; Gachon P; Boirie Y; Keriel C; Favier R; Pepe S; Demaison L; Leverve X
    Mol Cell Biochem; 2007 Jan; 295(1-2):217-28. PubMed ID: 16944307
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 33.