These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 7895823)
1. Brainstem motoneuron pools that are selectively resistant in amyotrophic lateral sclerosis are preferentially enriched in parvalbumin: evidence from monkey brainstem for a calcium-mediated mechanism in sporadic ALS. Reiner A; Medina L; Figueredo-Cardenas G; Anfinson S Exp Neurol; 1995 Feb; 131(2):239-50. PubMed ID: 7895823 [TBL] [Abstract][Full Text] [Related]
2. Differential abundance of glutamate transporter subtypes in amyotrophic lateral sclerosis (ALS)-vulnerable versus ALS-resistant brain stem motor cell groups. Medina L; Figueredo-Cardenas G; Rothstein JD; Reiner A Exp Neurol; 1996 Dec; 142(2):287-95. PubMed ID: 8934560 [TBL] [Abstract][Full Text] [Related]
3. Localization of parvalbumin, calretinin, and calbindin D-28k in identified extraocular motoneurons and internuclear neurons of the cat. de la Cruz RR; Pastor AM; Martińez-Guijarro FJ; López-García C; Delgado-García JM J Comp Neurol; 1998 Jan; 390(3):377-91. PubMed ID: 9455899 [TBL] [Abstract][Full Text] [Related]
4. The role of calcium-binding proteins in selective motoneuron vulnerability in amyotrophic lateral sclerosis. Alexianu ME; Ho BK; Mohamed AH; La Bella V; Smith RG; Appel SH Ann Neurol; 1994 Dec; 36(6):846-58. PubMed ID: 7998770 [TBL] [Abstract][Full Text] [Related]
5. Organization of choline acetyltransferase-containing structures in the cranial nerve motor nuclei and spinal cord of the monkey. Ichikawa T; Shimizu T Brain Res; 1998 Jan; 779(1-2):96-103. PubMed ID: 9473607 [TBL] [Abstract][Full Text] [Related]
6. Serotonergic mechanisms in amyotrophic lateral sclerosis. Sandyk R Int J Neurosci; 2006 Jul; 116(7):775-826. PubMed ID: 16861147 [TBL] [Abstract][Full Text] [Related]
7. Over-expression of parvalbumin in transgenic mice rescues motoneurons from injury-induced cell death. Dekkers J; Bayley P; Dick JR; Schwaller B; Berchtold MW; Greensmith L Neuroscience; 2004; 123(2):459-66. PubMed ID: 14698753 [TBL] [Abstract][Full Text] [Related]
8. Motor neurons are rich in non-phosphorylated neurofilaments: cross-species comparison and alterations in ALS. Tsang YM; Chiong F; Kuznetsov D; Kasarskis E; Geula C Brain Res; 2000 Apr; 861(1):45-58. PubMed ID: 10751564 [TBL] [Abstract][Full Text] [Related]
9. A systematic study of brainstem motor nuclei in a mouse model of ALS, the effects of lithium. Ferrucci M; Spalloni A; Bartalucci A; Cantafora E; Fulceri F; Nutini M; Longone P; Paparelli A; Fornai F Neurobiol Dis; 2010 Feb; 37(2):370-83. PubMed ID: 19874893 [TBL] [Abstract][Full Text] [Related]
10. Calcium binding proteins in motoneurons at low and high risk for degeneration in ALS. Laslo P; Lipski J; Nicholson LF; Miles GB; Funk GD Neuroreport; 2000 Oct; 11(15):3305-8. PubMed ID: 11059892 [TBL] [Abstract][Full Text] [Related]
11. Differential vulnerability of cranial motoneurons in mouse models with motor neuron degeneration. Haenggeli C; Kato AC Neurosci Lett; 2002 Dec; 335(1):39-43. PubMed ID: 12457737 [TBL] [Abstract][Full Text] [Related]
12. Parvalbumin overexpression alters immune-mediated increases in intracellular calcium, and delays disease onset in a transgenic model of familial amyotrophic lateral sclerosis. Beers DR; Ho BK; Siklós L; Alexianu ME; Mosier DR; Mohamed AH; Otsuka Y; Kozovska ME; McAlhany RE; Smith RG; Appel SH J Neurochem; 2001 Nov; 79(3):499-509. PubMed ID: 11701753 [TBL] [Abstract][Full Text] [Related]
13. Organization of choline acetyltransferase-containing structures in the cranial nerve motor nuclei and lamina IX of the cervical spinal cord of the rat. Ichikawa T; Hirata Y J Hirnforsch; 1990; 31(2):251-7. PubMed ID: 2358666 [TBL] [Abstract][Full Text] [Related]
14. Differential expression of GABAA and glycine receptors in ALS-resistant vs. ALS-vulnerable motoneurons: possible implications for selective vulnerability of motoneurons. Lorenzo LE; Barbe A; Portalier P; Fritschy JM; Bras H Eur J Neurosci; 2006 Jun; 23(12):3161-70. PubMed ID: 16820006 [TBL] [Abstract][Full Text] [Related]
15. Homeostatic dysregulation in membrane properties of masticatory motoneurons compared with oculomotor neurons in a mouse model for amyotrophic lateral sclerosis. Venugopal S; Hsiao CF; Sonoda T; Wiedau-Pazos M; Chandler SH J Neurosci; 2015 Jan; 35(2):707-20. PubMed ID: 25589764 [TBL] [Abstract][Full Text] [Related]
16. Extraocular Motor System Exhibits a Higher Expression of Neurotrophins When Compared with Other Brainstem Motor Systems. Hernández RG; Silva-Hucha S; Morcuende S; de la Cruz RR; Pastor AM; Benítez-Temiño B Front Neurosci; 2017; 11():399. PubMed ID: 28744196 [TBL] [Abstract][Full Text] [Related]
17. Sources and lesion-induced changes of VEGF expression in brainstem motoneurons. Silva-Hucha S; Carrero-Rojas G; Fernández de Sevilla ME; Benítez-Temiño B; Davis-López de Carrizosa MA; Pastor AM; Morcuende S Brain Struct Funct; 2020 Apr; 225(3):1033-1053. PubMed ID: 32189115 [TBL] [Abstract][Full Text] [Related]
18. Antibodies to calcium channels from ALS patients passively transferred to mice selectively increase intracellular calcium and induce ultrastructural changes in motoneurons. Engelhardt JI; Siklós L; Kömüves L; Smith RG; Appel SH Synapse; 1995 Jul; 20(3):185-99. PubMed ID: 7570350 [TBL] [Abstract][Full Text] [Related]
20. Extraocular motoneurons of the adult rat show higher levels of vascular endothelial growth factor and its receptor Flk-1 than other cranial motoneurons. Silva-Hucha S; Hernández RG; Benítez-Temiño B; Pastor ÁM; de la Cruz RR; Morcuende S PLoS One; 2017; 12(6):e0178616. PubMed ID: 28570669 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]