These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 7896073)
1. Signal transduction in the Rhizobium meliloti dicarboxylic acid transport system. Giblin L; Boesten B; Turk S; Hooykaas P; O'Gara F FEMS Microbiol Lett; 1995 Feb; 126(1):25-30. PubMed ID: 7896073 [TBL] [Abstract][Full Text] [Related]
2. Analysis of the C4-dicarboxylate transport genes of Rhizobium meliloti: nucleotide sequence and deduced products of dctA, dctB, and dctD. Watson RJ Mol Plant Microbe Interact; 1990; 3(3):174-81. PubMed ID: 2134335 [TBL] [Abstract][Full Text] [Related]
3. Roles of DctA and DctB in signal detection by the dicarboxylic acid transport system of Rhizobium leguminosarum. Reid CJ; Poole PS J Bacteriol; 1998 May; 180(10):2660-9. PubMed ID: 9573150 [TBL] [Abstract][Full Text] [Related]
4. Negative regulation of sigma 54-dependent dctA expression by the transcriptional activator DctD. Labes M; Finan TM J Bacteriol; 1993 May; 175(9):2674-81. PubMed ID: 8478332 [TBL] [Abstract][Full Text] [Related]
5. Relationships between C4 dicarboxylic acid transport and chemotaxis in Rhizobium meliloti. Robinson JB; Bauer WD J Bacteriol; 1993 Apr; 175(8):2284-91. PubMed ID: 8468289 [TBL] [Abstract][Full Text] [Related]
6. The Escherichia coli cAMP receptor protein (CRP) represses the Rhizobium meliloti dctA promoter in a cAMP-dependent fashion. Wang YP; Giblin L; Boesten B; O'Gara F Mol Microbiol; 1993 Apr; 8(2):253-9. PubMed ID: 8391103 [TBL] [Abstract][Full Text] [Related]
7. NtrBC-dependent expression from the Rhizobium meliloti dctA promoter in Escherichia coli. Allaway D; Boesten B; O'Gara F FEMS Microbiol Lett; 1995 May; 128(3):241-5. PubMed ID: 7781970 [TBL] [Abstract][Full Text] [Related]
8. Tandem DctD-binding sites of the Rhizobium meliloti dctA upstream activating sequence are essential for optimal function despite a 50- to 100-fold difference in affinity for DctD. Ledebur H; Nixon BT Mol Microbiol; 1992 Dec; 6(23):3479-92. PubMed ID: 1474893 [TBL] [Abstract][Full Text] [Related]
9. Isolation and characterization of Azospirillum lipoferum locus that complements Rhizobium meliloti dctA and dctB mutations. Tripathi AK; Mishra BM Can J Microbiol; 1996 May; 42(5):503-6. PubMed ID: 8640608 [TBL] [Abstract][Full Text] [Related]
10. Modular structure of the Rhizobium meliloti DctB protein. Giblin L; Archdeacon J; O'Gara F FEMS Microbiol Lett; 1996 May; 139(1):19-25. PubMed ID: 8647370 [TBL] [Abstract][Full Text] [Related]
11. Analysis of C4-dicarboxylate transport genes in Rhizobium meliloti. Yarosh OK; Charles TC; Finan TM Mol Microbiol; 1989 Jun; 3(6):813-23. PubMed ID: 2546011 [TBL] [Abstract][Full Text] [Related]
12. Protein crosslinking studies suggest that Rhizobium meliloti C4-dicarboxylic acid transport protein D, a sigma 54-dependent transcriptional activator, interacts with sigma 54 and the beta subunit of RNA polymerase. Lee JH; Hoover TR Proc Natl Acad Sci U S A; 1995 Oct; 92(21):9702-6. PubMed ID: 7568201 [TBL] [Abstract][Full Text] [Related]
13. Rhizobium meliloti and Rhizobium leguminosarum dctD gene products bind to tandem sites in an activation sequence located upstream of sigma 54-dependent dctA promoters. Ledebur H; Gu B; Sojda J; Nixon BT J Bacteriol; 1990 Jul; 172(7):3888-97. PubMed ID: 2193923 [TBL] [Abstract][Full Text] [Related]
14. C4-dicarboxylates sensing mechanism revealed by the crystal structures of DctB sensor domain. Zhou YF; Nan B; Nan J; Ma Q; Panjikar S; Liang YH; Wang Y; Su XD J Mol Biol; 2008 Oct; 383(1):49-61. PubMed ID: 18725229 [TBL] [Abstract][Full Text] [Related]
15. A rhizobial homolog of IHF stimulates transcription of dctA in Rhizobium leguminosarum but not in Sinorhizobium meliloti. Sojda J; Gu B; Lee J; Hoover TR; Nixon BT Gene; 1999 Oct; 238(2):489-500. PubMed ID: 10570977 [TBL] [Abstract][Full Text] [Related]
16. Rhizobium meliloti DctD, a sigma 54-dependent transcriptional activator, may be negatively controlled by a subdomain in the C-terminal end of its two-component receiver module. Gu B; Lee JH; Hoover TR; Scholl D; Nixon BT Mol Microbiol; 1994 Jul; 13(1):51-66. PubMed ID: 7984094 [TBL] [Abstract][Full Text] [Related]
17. Genetic analysis and regulation of the Rhizobium meliloti genes controlling C4-dicarboxylic acid transport. Wang YP; Birkenhead K; Boesten B; Manian S; O'Gara F Gene; 1989 Dec; 85(1):135-44. PubMed ID: 2695394 [TBL] [Abstract][Full Text] [Related]
18. Overexpression of the dctA gene in Rhizobium meliloti: effect on transport of C4 dicarboxylates and symbiotic nitrogen fixation. Rastogi V; Labes M; Finan T; Watson R Can J Microbiol; 1992 Jun; 38(6):555-62. PubMed ID: 1504920 [TBL] [Abstract][Full Text] [Related]
19. Rhizobium leguminosarum nodulation gene (nod) expression is lowered by an allele-specific mutation in the dicarboxylate transport gene dctB. Mavridou A; Barny MA; Poole P; Plaskitt K; Davies AE; Johnston AW; Downie JA Microbiology (Reading); 1995 Jan; 141 ( Pt 1)():103-11. PubMed ID: 7894701 [TBL] [Abstract][Full Text] [Related]
20. Cooperative binding of DctD to the dctA upstream activation sequence of Rhizobium meliloti is enhanced in a constitutively active truncated mutant. Scholl D; Nixon BT J Biol Chem; 1996 Oct; 271(42):26435-42. PubMed ID: 8824302 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]