These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 7896140)

  • 1. Bacterial plant oncogenes: the rol genes' saga.
    Costantino P; Capone I; Cardarelli M; De Paolis A; Mauro ML; Trovato M
    Genetica; 1994; 94(2-3):203-11. PubMed ID: 7896140
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functions of rol genes in plant secondary metabolism.
    Bulgakov VP
    Biotechnol Adv; 2008; 26(4):318-24. PubMed ID: 18434069
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A plant oncogene as a phosphatase.
    Filippini F; Rossi V; Marin O; Trovato M; Costantino P; Downey PM; Lo Schiavo F; Terzi M
    Nature; 1996 Feb; 379(6565):499-500. PubMed ID: 8596628
    [No Abstract]   [Full Text] [Related]  

  • 4. Identification of a putative rol B gene on the TR-DNA of the Agrobacterium rhizogenes A4 Ri plasmid.
    Bouchez D; Camilleri C
    Plant Mol Biol; 1990 Apr; 14(4):617-9. PubMed ID: 2102840
    [No Abstract]   [Full Text] [Related]  

  • 5. rol genes of Agrobacterium rhizogenes cucumopine strain: sequence, effects and pattern of expression.
    Serino G; Clerot D; Brevet J; Costantino P; Cardarelli M
    Plant Mol Biol; 1994 Oct; 26(1):415-22. PubMed ID: 7948887
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Agrobacterium tumefaciens T-DNA gene 6b stimulates rol-induced root formation, permits growth at high auxin concentrations and increases root size.
    Tinland B; Rohfritsch O; Michler P; Otten L
    Mol Gen Genet; 1990 Aug; 223(1):1-10. PubMed ID: 2259331
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Organization and functional analysis of three T-DNAs from the vitopine Ti plasmid pTiS4.
    Canaday J; Gérad JC; Crouzet P; Otten L
    Mol Gen Genet; 1992 Nov; 235(2-3):292-303. PubMed ID: 1465104
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Agrobacterium tumefaciens-mediated transformation of the monocot genus Gladiolus: detection of expression of T-DNA-encoded genes.
    Graves AC; Goldman SL
    J Bacteriol; 1987 Apr; 169(4):1745-6. PubMed ID: 3558323
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [6b genes: the important effective factors relative to tumor formation in plants].
    Jin YK; Liu CL; Ruan Y
    Yi Chuan; 2011 Nov; 33(11):1212-8. PubMed ID: 22120076
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Induction and growth properties of carrot roots with different complements of Agrobacterium rhizogenes T-DNA.
    Capone I; Spanò L; Cardarelli M; Bellincampi D; Petit A; Costantino P
    Plant Mol Biol; 1989 Jul; 13(1):43-52. PubMed ID: 2562759
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gain of function assays identify non-rol genes from Agrobacterium rhizogenes TL-DNA that alter plant morphogenesis or hormone sensitivity.
    Lemcke K; Schmülling T
    Plant J; 1998 Aug; 15(3):423-33. PubMed ID: 9750353
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single genes from Agrobacterium rhizogenes influence plant development.
    Schmülling T; Schell J; Spena A
    EMBO J; 1988 Sep; 7(9):2621-9. PubMed ID: 15977331
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of T-DNA oncogene complements of Agrobacterium tumefaciens tumor-inducing plasmids with limited and wide host ranges.
    Buchholz WG; Thomashow MF
    J Bacteriol; 1984 Oct; 160(1):319-26. PubMed ID: 6090421
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Agrobacterium tumefaciens and the susceptible plant cell: a novel adaptation of extracellular recognition and DNA conjugation.
    Stachel SE; Zambryski PC
    Cell; 1986 Oct; 47(2):155-7. PubMed ID: 3768954
    [No Abstract]   [Full Text] [Related]  

  • 15. Identification of the Agrobacterium tumefaciens C58 T-DNA genes e and f and their impact on crown gall tumour formation.
    Broer I; Dröge-Laser W; Barker RF; Neumann K; Klipp W; Pühler A
    Plant Mol Biol; 1995 Jan; 27(1):41-57. PubMed ID: 7865795
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resurrection of an ancestral gene: functional and evolutionary analyses of the Ngrol genes transferred from Agrobacterium to Nicotiana.
    Aoki S
    J Plant Res; 2004 Aug; 117(4):329-37. PubMed ID: 15338429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiple regions of a divergent promoter control the expression of the Agrobacterium rhizogenes aux1 and aux2 plant oncogenes.
    Gaudin V; Camilleri C; Jouanin L
    Mol Gen Genet; 1993 May; 239(1-2):225-34. PubMed ID: 8510649
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Agrobacterium rhizogenes GALLS gene encodes two secreted proteins required for genetic transformation of plants.
    Hodges LD; Lee LY; McNett H; Gelvin SB; Ream W
    J Bacteriol; 2009 Jan; 191(1):355-64. PubMed ID: 18952790
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent advances in the understanding of Agrobacterium rhizogenes-derived genes and their effects on stress resistance and plant metabolism.
    Bulgakov VP; Shkryl YN; Veremeichik GN; Gorpenchenko TY; Vereshchagina YV
    Adv Biochem Eng Biotechnol; 2013; 134():1-22. PubMed ID: 23576052
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Natural plant genetic engineer Agrobacterium rhizogenes: role of T-DNA in plant secondary metabolism.
    Chandra S
    Biotechnol Lett; 2012 Mar; 34(3):407-15. PubMed ID: 22048847
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.