BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

22 related articles for article (PubMed ID: 7896235)

  • 1. Acute oral toxicity evaluations of some zinc(II) complexes derived from 1-(2-salicylaldiminoethyl)piperazine Schiff bases in rats.
    Salga MS; Ali HM; Abdulla MA; Abdelwahab SI
    Int J Mol Sci; 2012; 13(2):1393-1404. PubMed ID: 22408397
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced histopathology of the immune system: a review and update.
    Elmore SA
    Toxicol Pathol; 2012; 40(2):148-56. PubMed ID: 22089843
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of the utility of popliteal lymph node examination in a cyclophosphamide model of immunotoxicity in the rat.
    Lapointe JM; Valdez RA; Ryan AM; Haley PJ
    J Immunotoxicol; 2016 Jul; 13(4):449-52. PubMed ID: 27216540
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The accuracy of extended histopathology to detect immunotoxic chemicals.
    Germolec DR; Kashon M; Nyska A; Kuper CF; Portier C; Kommineni C; Johnson KA; Luster MI
    Toxicol Sci; 2004 Dec; 82(2):504-14. PubMed ID: 15342959
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of immunotoxicity of benzo[a]pyrene in a subacute toxicity study after oral exposure in rats.
    De Jong WH; Kroese ED; Vos JG; Van Loveren H
    Toxicol Sci; 1999 Aug; 50(2):214-20. PubMed ID: 10478857
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time-course study of the immunotoxic effects of the anticancer drug chlorambucil in the rat.
    Pearse G; Pietersma A; Cunliffe J; Foster JR; Turton J; Derbyshire N; Randall KJ
    Toxicol Pathol; 2009 Dec; 37(7):887-901. PubMed ID: 19805614
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 2,5-Hexane diol induced thymic atrophy and lymphocytotoxicity in rats.
    Singh KP; Kannan K; Goel SK; Pandya KP; Shanker R
    Ind Health; 1983; 21(4):235-42. PubMed ID: 6654706
    [No Abstract]   [Full Text] [Related]  

  • 8. The identification of chemicals with sensitizing or immunosuppressive properties in routine toxicology.
    Basketter DA; Bremmer JN; Kammuller ME; Kawabata T; Kimber I; Loveless SE; Magda S; Pal TH; Stringer DA; Vohr HW
    Food Chem Toxicol; 1994 Mar; 32(3):289-96. PubMed ID: 8157225
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials.
    EFSA GMO Panel Working Group on Animal Feeding Trials
    Food Chem Toxicol; 2008 Mar; 46 Suppl 1():S2-70. PubMed ID: 18328408
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Histopathologic approaches to detect changes indicative of immunotoxicity.
    Kuper CF; Harleman JH; Richter-Reichelm HB; Vos JG
    Toxicol Pathol; 2000; 28(3):454-66. PubMed ID: 10862566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pathology considerations for, and subsequent risk assessment of, chemicals identified as immunosuppressive in routine toxicology.
    Basketter DA; Bremmer JN; Buckley P; Kammuller ME; Kawabata T; Kimber I; Loveless SE; Magda S; Stringer DA; Vohr HW
    Food Chem Toxicol; 1995 Mar; 33(3):239-43. PubMed ID: 7896235
    [TBL] [Abstract][Full Text] [Related]  

  • 12.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 13.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 14.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 15.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 16.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 17.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 18.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.