These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 7896451)
1. Chromosomal abnormalities in glioblastoma multiforme tumors and glioma cell lines detected by comparative genomic hybridization. Kim DH; Mohapatra G; Bollen A; Waldman FM; Feuerstein BG Int J Cancer; 1995 Mar; 60(6):812-9. PubMed ID: 7896451 [TBL] [Abstract][Full Text] [Related]
2. Specific patterns of DNA copy number gains and losses in eight new glioblastoma multiforme cell lines. Ramirez T; Thoma K; Taja-Chayeb L; Efferth T; Herrera LA; Halatsch ME; Gebhart E Int J Oncol; 2003 Aug; 23(2):453-60. PubMed ID: 12851695 [TBL] [Abstract][Full Text] [Related]
3. Identification of novel genomic markers related to progression to glioblastoma through genomic profiling of 25 primary glioma cell lines. Roversi G; Pfundt R; Moroni RF; Magnani I; van Reijmersdal S; Pollo B; Straatman H; Larizza L; Schoenmakers EF Oncogene; 2006 Mar; 25(10):1571-83. PubMed ID: 16247447 [TBL] [Abstract][Full Text] [Related]
4. Genomic changes in glioblastoma cell lines detected by comparative genomic hybridization. Venkatraj VS; Begemann M; Sobrino A; Bruce JN; Weinstein IB; Warburton D J Neurooncol; 1998 Jan; 36(2):141-8. PubMed ID: 9525813 [TBL] [Abstract][Full Text] [Related]
5. Detection of multiple gains and losses of genetic material in ten glioma cell lines by comparative genomic hybridization. Mohapatra G; Kim DH; Feuerstein BG Genes Chromosomes Cancer; 1995 Jun; 13(2):86-93. PubMed ID: 7542911 [TBL] [Abstract][Full Text] [Related]
6. Clinically distinct subgroups of glioblastoma multiforme studied by comparative genomic hybridization. Weber RG; Sommer C; Albert FK; Kiessling M; Cremer T Lab Invest; 1996 Jan; 74(1):108-19. PubMed ID: 8569172 [TBL] [Abstract][Full Text] [Related]
7. Optimizing comparative genomic hybridization for analysis of DNA sequence copy number changes in solid tumors. Kallioniemi OP; Kallioniemi A; Piper J; Isola J; Waldman FM; Gray JW; Pinkel D Genes Chromosomes Cancer; 1994 Aug; 10(4):231-43. PubMed ID: 7522536 [TBL] [Abstract][Full Text] [Related]
8. Comparative genomic hybridization of human malignant gliomas reveals multiple amplification sites and nonrandom chromosomal gains and losses. Schröck E; Thiel G; Lozanova T; du Manoir S; Meffert MC; Jauch A; Speicher MR; Nürnberg P; Vogel S; Jänisch W Am J Pathol; 1994 Jun; 144(6):1203-18. PubMed ID: 8203461 [TBL] [Abstract][Full Text] [Related]
9. Screening of genomic imbalances in glioblastoma multiforme using high-resolution comparative genomic hybridization. Vranová V; Necesalová E; Kuglík P; Cejpek P; Pesáková M; Budínská E; Relichová J; Veselská R Oncol Rep; 2007 Feb; 17(2):457-64. PubMed ID: 17203188 [TBL] [Abstract][Full Text] [Related]
10. Characterization of genomic alterations associated with glioma progression by comparative genomic hybridization. Weber RG; Sabel M; Reifenberger J; Sommer C; Oberstrass J; Reifenberger G; Kiessling M; Cremer T Oncogene; 1996 Sep; 13(5):983-94. PubMed ID: 8806688 [TBL] [Abstract][Full Text] [Related]
11. Genetic aberrations in prostate carcinoma detected by comparative genomic hybridization and microsatellite analysis: association with progression and angiogenesis. Strohmeyer DM; Berger AP; Moore DH; Bartsch G; Klocker H; Carroll PR; Loening SA; Jensen RH Prostate; 2004 Apr; 59(1):43-58. PubMed ID: 14991865 [TBL] [Abstract][Full Text] [Related]
12. Comparative genomic hybridization reveals complex genetic changes in primary breast cancer tumors and their cell lines. Larramendy ML; Lushnikova T; Björkqvist AM; Wistuba II; Virmani AK; Shivapurkar N; Gazdar AF; Knuutila S Cancer Genet Cytogenet; 2000 Jun; 119(2):132-8. PubMed ID: 10867149 [TBL] [Abstract][Full Text] [Related]
13. Novel chromosomal abnormalities identified by comparative genomic hybridization in parathyroid adenomas. Palanisamy N; Imanishi Y; Rao PH; Tahara H; Chaganti RS; Arnold A J Clin Endocrinol Metab; 1998 May; 83(5):1766-70. PubMed ID: 9589690 [TBL] [Abstract][Full Text] [Related]
14. Gains and losses of DNA sequences in childhood brain tumors analyzed by comparative genomic hybridization. Shlomit R; Ayala AG; Michal D; Ninett A; Frida S; Boleslaw G; Gad B; Gideon R; Shlomi C Cancer Genet Cytogenet; 2000 Aug; 121(1):67-72. PubMed ID: 10958944 [TBL] [Abstract][Full Text] [Related]
15. Molecular classification of human gliomas using matrix-based comparative genomic hybridization. Roerig P; Nessling M; Radlwimmer B; Joos S; Wrobel G; Schwaenen C; Reifenberger G; Lichter P Int J Cancer; 2005 Oct; 117(1):95-103. PubMed ID: 15880582 [TBL] [Abstract][Full Text] [Related]
16. Comparative genomic hybridization of squamous cell carcinoma of the esophagus: the possible involvement of the DPI gene in the 13q34 amplicon. Shinomiya T; Mori T; Ariyama Y; Sakabe T; Fukuda Y; Murakami Y; Nakamura Y; Inazawa J Genes Chromosomes Cancer; 1999 Apr; 24(4):337-44. PubMed ID: 10092132 [TBL] [Abstract][Full Text] [Related]
17. A simple specific pattern of chromosomal aberrations at early stages of head and neck squamous cell carcinomas: PIK3CA but not p63 gene as a likely target of 3q26-qter gains. Redon R; Muller D; Caulee K; Wanherdrick K; Abecassis J; du Manoir S Cancer Res; 2001 May; 61(10):4122-9. PubMed ID: 11358835 [TBL] [Abstract][Full Text] [Related]
18. DNA in situ hybridization (interphase cytogenetics) versus comparative genomic hybridization (CGH) in human cancer: detection of numerical and structural chromosome aberrations. Van Dekken H; Krijtenburg PJ; Alers JC Acta Histochem; 2000 Feb; 102(1):85-94. PubMed ID: 10726167 [TBL] [Abstract][Full Text] [Related]
19. Combined study of prostatic carcinoma by classical cytogenetic analysis and comparative genomic hybridization. Verdorfer I; Hobisch A; Culig Z; Hittmair A; Bartsch G; Erdel M; Duba HC; Utermann G Int J Oncol; 2001 Dec; 19(6):1263-70. PubMed ID: 11713598 [TBL] [Abstract][Full Text] [Related]