These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 7896501)
1. Structural stability of lipase from wheat germ. Rajeshwara AN; Prakash V Int J Pept Protein Res; 1994 Nov; 44(5):435-40. PubMed ID: 7896501 [TBL] [Abstract][Full Text] [Related]
2. Mechanism of solvent-induced thermal stabilization of alpha-amylase from Bacillus amyloliquefaciens. Rajendran S; Radha C; Prakash V Int J Pept Protein Res; 1995 Feb; 45(2):122-8. PubMed ID: 7782159 [TBL] [Abstract][Full Text] [Related]
3. Effect of cosolvents on the structural stability of endoglucanase from Aspergillus aculeatus. Naika GS; Prakash V; Tiku PK J Agric Food Chem; 2009 Nov; 57(21):10450-6. PubMed ID: 19813733 [TBL] [Abstract][Full Text] [Related]
4. Mechanism of solvent induced thermal stabilization of papain. Sathish HA; Kumar PR; Prakash V Int J Biol Macromol; 2007 Oct; 41(4):383-90. PubMed ID: 17628660 [TBL] [Abstract][Full Text] [Related]
5. Thermal stabilization of multimeric proteins: a case study with alpha-globulin. Radha C; Muralidhara BK; Kumar PR; Tasneem R; Prakash V Indian J Biochem Biophys; 1998 Apr; 35(2):76-85. PubMed ID: 9753865 [TBL] [Abstract][Full Text] [Related]
6. Interaction of guanidine hydrochloride and guanidine thiocyanate with wheat germ lipase. Rajeshwara AN; Prakash V Indian J Biochem Biophys; 1994 Aug; 31(4):315-21. PubMed ID: 8002014 [TBL] [Abstract][Full Text] [Related]
7. Thermal stability of alpha-amylase in aqueous cosolvent systems. Yadav JK; Prakash V J Biosci; 2009 Sep; 34(3):377-87. PubMed ID: 19805899 [TBL] [Abstract][Full Text] [Related]
8. Interaction of selected cosolvents with bovine alpha-lactalbumin. Guna Sekhar PM; Prakash V Int J Biol Macromol; 2008 May; 42(4):348-55. PubMed ID: 18342933 [TBL] [Abstract][Full Text] [Related]
9. Preferential interaction of β-globulin from sesame seeds (Sesamum indicum L.) with cosolvents is accompanied by the protein structural reorganization. Sekhar PM; Yadav JK Protein Pept Lett; 2013 May; 20(5):510-6. PubMed ID: 23061669 [TBL] [Abstract][Full Text] [Related]
10. Structural stability of lipase from wheat germ in alkaline pH. Rao KS; Rajendran S; Rajeshwara AN; Prakash V J Protein Chem; 1991 Jun; 10(3):291-9. PubMed ID: 1910461 [TBL] [Abstract][Full Text] [Related]
11. Preferential interaction of denaturants with rice bran lipase. Rajeshwara AN; Gopalakrishna KN; Prakash V Int J Biol Macromol; 1996 Jul; 19(1):1-7. PubMed ID: 8782712 [TBL] [Abstract][Full Text] [Related]
12. Effect of Organic Solvents on Porcine Pancreatic Lipase Thermal Aggregation. Vaezzadeh M; Sabbaghian M; Yaghmaei P; Ebrahim-Habibi A Protein Pept Lett; 2017; 24(10):955-961. PubMed ID: 28741463 [TBL] [Abstract][Full Text] [Related]
13. More stable structure of wheat germ lipase at low pH than its native state. Ahmad E; Fatima S; Khan MM; Khan RH Biochimie; 2010 Jul; 92(7):885-93. PubMed ID: 20363283 [TBL] [Abstract][Full Text] [Related]
14. Effects of chaotropic and kosmotropic cosolvents on the pressure-induced unfolding and denaturation of proteins: an FT-IR study on staphylococcal nuclease. Herberhold H; Royer CA; Winter R Biochemistry; 2004 Mar; 43(12):3336-45. PubMed ID: 15035605 [TBL] [Abstract][Full Text] [Related]
15. Optimization of extraction of lipase from wheat seeds (Triticum aestivum) by response surface methodology. Pierozan MK; da Costa RJ; Antunes OA; Oestreicher EG; Oliveira JV; Cansian RL; Treichel H; de Oliveira D J Agric Food Chem; 2009 Oct; 57(20):9716-21. PubMed ID: 19803518 [TBL] [Abstract][Full Text] [Related]
16. Structural and catalytic response to temperature and cosolvents of carboxylesterase EST1 from the extremely thermoacidophilic archaeon Sulfolobus solfataricus P1. Sehgal AC; Tompson R; Cavanagh J; Kelly RM Biotechnol Bioeng; 2002 Dec; 80(7):784-93. PubMed ID: 12402324 [TBL] [Abstract][Full Text] [Related]
17. Deterministic pressure-induced dissociation of vicilin, the 7S storage globulin from pea seeds: effects of pH and cosolvents on oligomer stability. Pedrosa C; Ferreira ST Biochemistry; 1994 Apr; 33(13):4046-55. PubMed ID: 8142407 [TBL] [Abstract][Full Text] [Related]
18. Phenylboronic acid--a potent inhibitor of lipase from Oryza sativa. Raghavendra MP; Prakash V J Agric Food Chem; 2002 Oct; 50(21):6037-41. PubMed ID: 12358477 [TBL] [Abstract][Full Text] [Related]
19. Chemical modification of catalytic site of lipase from wheat germ: altered structure-activity profile. Gopalakrishna KN; Kumar PR; Prakash V Indian J Biochem Biophys; 2002 Feb; 39(1):28-34. PubMed ID: 22896886 [TBL] [Abstract][Full Text] [Related]
20. An organic solvent-tolerant alkaline lipase from cold-adapted Pseudomonas mandelii: cloning, expression, and characterization. Kim J; Jang SH; Lee C Biosci Biotechnol Biochem; 2013; 77(2):320-3. PubMed ID: 23391923 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]