These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 7896501)

  • 41. Thermal and solution stability of lysozyme in the presence of sucrose, glucose, and trehalose.
    James S; McManus JJ
    J Phys Chem B; 2012 Aug; 116(34):10182-8. PubMed ID: 22909409
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mechanisms of protein stabilization and prevention of protein aggregation by glycerol.
    Vagenende V; Yap MG; Trout BL
    Biochemistry; 2009 Nov; 48(46):11084-96. PubMed ID: 19817484
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Monovalent cation-induced conformational change in glucose oxidase leading to stabilization of the enzyme.
    Ahmad A; Akhtar MS; Bhakuni V
    Biochemistry; 2001 Feb; 40(7):1945-55. PubMed ID: 11329261
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Wheat-germ aspartate transcarbamoylase: revised purification, stability and re-evaluation of regulatory kinetics in terms of the Monod-Wyman-Changeux model.
    Khan AI; Chowdhry BZ; Yon RJ
    Eur J Biochem; 1999 Jan; 259(1-2):71-8. PubMed ID: 9914477
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Purification and characterization of lipases from wheat germ].
    Kapranchikov VS; Zherebtsov NA; Popova TN
    Prikl Biokhim Mikrobiol; 2004; 40(1):98-103. PubMed ID: 15029708
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Role of protein-solvent interactions in refolding: effects of cosolvent additives on the renaturation of porcine pancreatic elastase at various pHs.
    Jaspard E
    Arch Biochem Biophys; 2000 Mar; 375(2):220-8. PubMed ID: 10700378
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Mechanism of inhibition of rice bran lipase by polyphenols: a case study with chlorogenic acid and caffeic acid.
    Raghavendra MP; Kumar PR; Prakash V
    J Food Sci; 2007 Oct; 72(8):E412-9. PubMed ID: 17995599
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Co-solvent mediated thermal stabilization of chondroitinase ABC I form Proteus vulgaris.
    Nazari-Robati M; Khajeh K; Aminian M; Fathi-Roudsari M; Golestani A
    Int J Biol Macromol; 2012 Apr; 50(3):487-92. PubMed ID: 22274395
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Stability and structure of Penicillium chrysogenum lipase in the presence of organic solvents.
    Sadaf A; Grewal J; Jain I; Kumari A; Khare SK
    Prep Biochem Biotechnol; 2018; 48(10):977-983. PubMed ID: 30461349
    [TBL] [Abstract][Full Text] [Related]  

  • 50. New Insight into Old Bacillus Lipase: Solvent Stable Mesophilic Lipase Demonstrating Enzyme Activity towards Cold.
    Khurana J; Kumar R; Kumar A; Singh K; Singh R; Kaur J
    J Mol Microbiol Biotechnol; 2015; 25(5):340-8. PubMed ID: 26488405
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The effect of compactional pressure on a wheat germ lipase preparation.
    Zarrintan MH; Teng CD; Groves MJ
    Pharm Res; 1990 Mar; 7(3):247-50. PubMed ID: 2339097
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Microcalorimetric study of thermal unfolding of lysozyme in water/glycerol mixtures: an analysis by solvent exchange model.
    Spinozzi F; Ortore MG; Sinibaldi R; Mariani P; Esposito A; Cinelli S; Onori G
    J Chem Phys; 2008 Jul; 129(3):035101. PubMed ID: 18647045
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Kinetics of denaturation of human and chicken hemoglobins in the presence of co-solvents.
    Ajloo D; Moosavi-Movahedi AA
    J Biochem Mol Biol; 2003 Jul; 36(4):367-72. PubMed ID: 12895294
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Improvement of proteolytic and oxidative stability of Chondroitinase ABC I by cosolvents.
    Nazari-Robati M; Golestani A; Asadikaram G
    Int J Biol Macromol; 2016 Oct; 91():812-7. PubMed ID: 27311501
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Electrodynamic pressure modulation of protein stability in cosolvents.
    Damodaran S
    Biochemistry; 2013 Nov; 52(46):8363-73. PubMed ID: 24156352
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Lipolytic potential of Aspergillus japonicus LAB01: production, partial purification, and characterisation of an extracellular lipase.
    Souza LT; Oliveira JS; dos Santos VL; Regis WC; Santoro MM; Resende RR
    Biomed Res Int; 2014; 2014():108913. PubMed ID: 25530954
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effect of salt solutions applied during wheat conditioning on lipase activity and lipid stability of whole wheat flour.
    Doblado-Maldonado AF; Arndt EA; Rose DJ
    Food Chem; 2013 Sep; 140(1-2):204-9. PubMed ID: 23578634
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Deactivation and unfolding are uncoupled in a bacterial lipase exposed to heat, low pH and organic solvents.
    Invernizzi G; Casiraghi L; Grandori R; Lotti M
    J Biotechnol; 2009 Apr; 141(1-2):42-6. PubMed ID: 19428729
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Protein precipitation and denaturation by dimethyl sulfoxide.
    Arakawa T; Kita Y; Timasheff SN
    Biophys Chem; 2007 Dec; 131(1-3):62-70. PubMed ID: 17904724
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The inverse relationship between protein dynamics and thermal stability.
    Tsai AM; Udovic TJ; Neumann DA
    Biophys J; 2001 Oct; 81(4):2339-43. PubMed ID: 11566803
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.