These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 7896578)

  • 21. Temporal coding of low-frequency amplitude modulation in the torus semicircularis of the grass frog.
    Bibikov NG; Nizamov SV
    Hear Res; 1996 Nov; 101(1-2):23-44. PubMed ID: 8951430
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Stimulus properties influencing the responses of inferior colliculus neurons to amplitude-modulated sounds.
    Rees A; Møller AR
    Hear Res; 1987; 27(2):129-43. PubMed ID: 3610842
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modulation-frequency-specific adaptation in awake auditory cortex.
    Malone BJ; Beitel RE; Vollmer M; Heiser MA; Schreiner CE
    J Neurosci; 2015 Apr; 35(15):5904-16. PubMed ID: 25878263
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sensitivity of neurons in the auditory midbrain of the grassfrog to temporal characteristics of sound. II. Stimulation with amplitude modulated sound.
    Epping WJ; Eggermont JJ
    Hear Res; 1986; 24(1):55-72. PubMed ID: 3489703
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Temporal modulation transfer functions in cat primary auditory cortex: separating stimulus effects from neural mechanisms.
    Eggermont JJ
    J Neurophysiol; 2002 Jan; 87(1):305-21. PubMed ID: 11784752
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spectro-temporal receptive fields of midbrain auditory neurons in the rat obtained with frequency modulated stimulation.
    Poon PW; Yu PP
    Neurosci Lett; 2000 Jul; 289(1):9-12. PubMed ID: 10899396
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Periodicity coding in the inferior colliculus of the cat. I. Neuronal mechanisms.
    Langner G; Schreiner CE
    J Neurophysiol; 1988 Dec; 60(6):1799-822. PubMed ID: 3236052
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Representation of amplitude modulation in the auditory cortex of the cat. I. The anterior auditory field (AAF).
    Schreiner CE; Urbas JV
    Hear Res; 1986; 21(3):227-41. PubMed ID: 3013823
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Encoding of the amplitude modulation of pulsatile electrical stimulation in the feline cochlear nucleus by neurons in the inferior colliculus; effects of stimulus pulse rate.
    McCreery D; Han M; Pikov V; Yadav K; Pannu S
    J Neural Eng; 2013 Oct; 10(5):056010. PubMed ID: 23928683
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A neural circuit transforming temporal periodicity information into a rate-based representation in the mammalian auditory system.
    Dicke U; Ewert SD; Dau T; Kollmeier B
    J Acoust Soc Am; 2007 Jan; 121(1):310-26. PubMed ID: 17297786
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Corticofugal modulation of directional sensitivity in the midbrain of the big brown bat, Eptesicus fuscus.
    Zhou X; Jen PH
    Hear Res; 2005 May; 203(1-2):201-15. PubMed ID: 15855045
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Neurometric amplitude-modulation detection threshold in the guinea-pig ventral cochlear nucleus.
    Sayles M; Füllgrabe C; Winter IM
    J Physiol; 2013 Jul; 591(13):3401-19. PubMed ID: 23629508
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Temporal coding of envelopes and their interaural delays in the inferior colliculus of the unanesthetized rabbit.
    Batra R; Kuwada S; Stanford TR
    J Neurophysiol; 1989 Feb; 61(2):257-68. PubMed ID: 2918354
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Representation of a species-specific vocalization in the primary auditory cortex of the common marmoset: temporal and spectral characteristics.
    Wang X; Merzenich MM; Beitel R; Schreiner CE
    J Neurophysiol; 1995 Dec; 74(6):2685-706. PubMed ID: 8747224
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Temporal modulation transfer functions for single neurons in the auditory midbrain of the leopard frog. Intensity and carrier-frequency dependence.
    Eggermont JJ
    Hear Res; 1990 Jan; 43(2-3):181-98. PubMed ID: 2312413
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Amplitude modulation transfer functions reveal opposing populations within both the inferior colliculus and medial geniculate body.
    Kim DO; Carney L; Kuwada S
    J Neurophysiol; 2020 Oct; 124(4):1198-1215. PubMed ID: 32902353
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Phase-locked response characteristics of single neurons in the frog "cochlear nucleus" to steady-state and sinusoidal-amplitude-modulated tones.
    Feng AS; Lin WY
    J Neurophysiol; 1994 Nov; 72(5):2209-21. PubMed ID: 7884454
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Novelty detector neurons in the mammalian auditory midbrain.
    Pérez-González D; Malmierca MS; Covey E
    Eur J Neurosci; 2005 Dec; 22(11):2879-85. PubMed ID: 16324123
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Periodicity coding in the inferior colliculus of the cat. II. Topographical organization.
    Schreiner CE; Langner G
    J Neurophysiol; 1988 Dec; 60(6):1823-40. PubMed ID: 3236053
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Neural selectivity and tuning for sinusoidal frequency modulations in the inferior colliculus of the big brown bat, Eptesicus fuscus.
    Casseday JH; Covey E; Grothe B
    J Neurophysiol; 1997 Mar; 77(3):1595-605. PubMed ID: 9084622
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.