BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 7896598)

  • 1. Effect of Na+ and K+ channel blockade on baseline and anoxia-induced catecholamine release from rat carotid body.
    Doyle TP; Donnelly DF
    J Appl Physiol (1985); 1994 Dec; 77(6):2606-11. PubMed ID: 7896598
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemoreceptor nerve excitation may not be proportional to catecholamine secretion.
    Donnelly DF
    J Appl Physiol (1985); 1996 Aug; 81(2):657-64. PubMed ID: 8872631
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochemical detection of catecholamine release from rat carotid body in vitro.
    Donnelly DF
    J Appl Physiol (1985); 1993 May; 74(5):2330-7. PubMed ID: 8335564
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemotransduction by carotid body chemoreceptors is dependent on bicarbonate currents.
    Panisello JM; Donnelly DF
    Respir Physiol; 1998 Jun; 112(3):265-81. PubMed ID: 9749950
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An important functional role of persistent Na+ current in carotid body hypoxia transduction.
    Faustino EV; Donnelly DF
    J Appl Physiol (1985); 2006 Oct; 101(4):1076-84. PubMed ID: 16778007
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Developmental changes in hypoxia-induced catecholamine release from rat carotid body, in vitro.
    Donnelly DF; Doyle TP
    J Physiol; 1994 Mar; 475(2):267-75. PubMed ID: 8021833
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Developmental changes in chemoreceptor nerve activity and catecholamine secretion in rabbit carotid body: possible role of Na+ and Ca2+ currents.
    Rigual R; Almaraz L; González C; Donnelly DF
    Pflugers Arch; 2000 Feb; 439(4):463-70. PubMed ID: 10678743
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Does catecholamine secretion mediate the hypoxia-induced increase in nerve activity?
    Donnelly DF
    Biol Signals; 1995; 4(5):304-9. PubMed ID: 8704832
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biophysical characterization of whole-cell currents in O2-sensitive neurons from the rat glossopharyngeal nerve.
    Campanucci VA; Nurse CA
    Neuroscience; 2005; 132(2):437-51. PubMed ID: 15802195
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of hypoxia and dithionite on catecholamine release from isolated type I cells of the rat carotid body.
    Carpenter E; Hatton CJ; Peers C
    J Physiol; 2000 Mar; 523 Pt 3(Pt 3):719-29. PubMed ID: 10718750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Secretory responses of intact glomus cells in thin slices of rat carotid body to hypoxia and tetraethylammonium.
    Pardal R; Ludewig U; Garcia-Hirschfeld J; Lopez-Barneo J
    Proc Natl Acad Sci U S A; 2000 Feb; 97(5):2361-6. PubMed ID: 10681419
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemoreceptor activity is normal in mice lacking the NK1 receptor.
    Rigual R; Rico AJ; Prieto-Lloret J; de Felipe C; González C; Donnelly DF
    Eur J Neurosci; 2002 Dec; 16(11):2078-84. PubMed ID: 12473075
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-additive interactions between mitochondrial complex IV blockers and hypoxia in rat carotid body responses.
    Donnelly DF; Kim I; Mulligan EM; Carroll JL
    Respir Physiol Neurobiol; 2014 Jan; 190():62-9. PubMed ID: 24096081
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carotid body thin slices: responses of glomus cells to hypoxia and K(+)-channel blockers.
    Pardal R; López-Barneo J
    Respir Physiol Neurobiol; 2002 Aug; 132(1):69-79. PubMed ID: 12126696
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduced availability of voltage-gated sodium channels by depolarization or blockade by tetrodotoxin boosts burst firing and catecholamine release in mouse chromaffin cells.
    Vandael DH; Ottaviani MM; Legros C; Lefort C; Guérineau NC; Allio A; Carabelli V; Carbone E
    J Physiol; 2015 Feb; 593(4):905-27. PubMed ID: 25620605
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RT-PCR and pharmacological analysis of L-and T-type calcium channels in rat carotid body.
    Cáceres AI; Gonzalez-Obeso E; Gonzalez C; Rocher A
    Adv Exp Med Biol; 2009; 648():105-12. PubMed ID: 19536471
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Augmentation of hypoxia-induced nitric oxide generation in the rat carotid body adapted to chronic hypoxia: an involvement of constitutive and inducible nitric oxide synthases.
    Ye JS; Tipoe GL; Fung PC; Fung ML
    Pflugers Arch; 2002 May; 444(1-2):178-85. PubMed ID: 11976930
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular identification and functional role of voltage-gated sodium channels in rat carotid body chemoreceptor cells. Regulation of expression by chronic hypoxia in vivo.
    Caceres AI; Obeso A; Gonzalez C; Rocher A
    J Neurochem; 2007 Jul; 102(1):231-45. PubMed ID: 17564680
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Postnatal development of carotid body glomus cell response to hypoxia.
    Wasicko MJ; Breitwieser GE; Kim I; Carroll JL
    Respir Physiol Neurobiol; 2006 Dec; 154(3):356-71. PubMed ID: 16466972
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential effects of Na-K-ATPase pump inhibition, chemical anoxia, and glycolytic blockade on membrane potential of rat optic nerve.
    Malek SA; Adorante JS; Stys PK
    Brain Res; 2005 Mar; 1037(1-2):171-9. PubMed ID: 15777766
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.