These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 7896860)

  • 1. Lumbar spine maximum efforts and muscle recruitment patterns predicted by a model with multijoint muscles and joints with stiffness.
    Stokes IA; Gardner-Morse M
    J Biomech; 1995 Feb; 28(2):173-86. PubMed ID: 7896860
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of trunk muscles in generating follower load in the lumbar spine of neutral standing posture.
    Kim K; Kim YH
    J Biomech Eng; 2008 Aug; 130(4):041005. PubMed ID: 18601447
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of muscles in lumbar spine stability in maximum extension efforts.
    Gardner-Morse M; Stokes IA; Laible JP
    J Orthop Res; 1995 Sep; 13(5):802-8. PubMed ID: 7472760
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stabilizing function of trunk flexor-extensor muscles around a neutral spine posture.
    Cholewicki J; Panjabi MM; Khachatryan A
    Spine (Phila Pa 1976); 1997 Oct; 22(19):2207-12. PubMed ID: 9346140
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The intrinsic stiffness of the in vivo lumbar spine in response to quick releases: implications for reflexive requirements.
    Brown SH; McGill SM
    J Electromyogr Kinesiol; 2009 Oct; 19(5):727-36. PubMed ID: 18513993
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of symmetry of vertebral body loading consequent to lateral spinal curvature.
    Stokes IA
    Spine (Phila Pa 1976); 1997 Nov; 22(21):2495-503. PubMed ID: 9383855
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A biologically-assisted curved muscle model of the lumbar spine: Model validation.
    Hwang J; Knapik GG; Dufour JS; Best TM; Khan SN; Mendel E; Marras WS
    Clin Biomech (Bristol); 2016 Aug; 37():153-159. PubMed ID: 27484459
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Importance of the intersegmental trunk muscles for the stability of the lumbar spine. A biomechanical study in vitro.
    Quint U; Wilke HJ; Shirazi-Adl A; Parnianpour M; Löer F; Claes LE
    Spine (Phila Pa 1976); 1998 Sep; 23(18):1937-45. PubMed ID: 9779525
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trunk muscle activation and associated lumbar spine joint shear forces under different levels of external forward force applied to the trunk.
    Kingma I; Staudenmann D; van Dieën JH
    J Electromyogr Kinesiol; 2007 Feb; 17(1):14-24. PubMed ID: 16531071
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effects of abdominal muscle coactivation on lumbar spine stability.
    Gardner-Morse MG; Stokes IA
    Spine (Phila Pa 1976); 1998 Jan; 23(1):86-91; discussion 91-2. PubMed ID: 9460158
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The biomechanical effects of variation in the maximum forces exerted by trunk muscles on the joint forces and moments in the lumbar spine: a finite element analysis.
    Kim K; Lee SK; Kim YH
    Proc Inst Mech Eng H; 2010 Oct; 224(10):1165-74. PubMed ID: 21138234
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Decrease in trunk muscular response to perturbation with preactivation of lumbar spinal musculature.
    Stokes IA; Gardner-Morse M; Henry SM; Badger GJ
    Spine (Phila Pa 1976); 2000 Aug; 25(15):1957-64. PubMed ID: 10908940
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of biomechanical parameters in the lumbar spine during static sagittal plane lifting.
    Kong WZ; Goel VK; Gilbertson LG
    J Biomech Eng; 1998 Apr; 120(2):273-80. PubMed ID: 10412390
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An equation to calculate individual muscle contributions to joint stability.
    Potvin JR; Brown SH
    J Biomech; 2005 May; 38(5):973-80. PubMed ID: 15797580
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lumbar muscle activities in rapid three-dimensional pulling tasks.
    Thelen DG; Ashton-Miller JA; Schultz AB
    Spine (Phila Pa 1976); 1996 Mar; 21(5):605-13. PubMed ID: 8852317
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A model of spine, ribcage and pelvic responses to a specific lumbar manipulative force in relaxed subjects.
    Lee M; Kelly DW; Steven GP
    J Biomech; 1995 Nov; 28(11):1403-8. PubMed ID: 8522552
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of spinal disc translational stiffness on the lumbar spinal loads, ligament forces and trunk muscle forces during upper body inclination.
    Arshad R; Zander T; Bashkuev M; Schmidt H
    Med Eng Phys; 2017 Aug; 46():54-62. PubMed ID: 28666589
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of muscle dysfunction on lumbar spine mechanics. A finite element study based on a two motion segments model.
    Kong WZ; Goel VK; Gilbertson LG; Weinstein JN
    Spine (Phila Pa 1976); 1996 Oct; 21(19):2197-206; discussion 2206-7. PubMed ID: 8902963
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A frontal plane model of the lumbar spine subjected to a follower load: implications for the role of muscles.
    Patwardhan AG; Meade KP; Lee B
    J Biomech Eng; 2001 Jun; 123(3):212-7. PubMed ID: 11476363
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of different strongman events: trunk muscle activation and lumbar spine motion, load, and stiffness.
    McGill SM; McDermott A; Fenwick CM
    J Strength Cond Res; 2009 Jul; 23(4):1148-61. PubMed ID: 19528856
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.