These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 7896860)

  • 21. The intersegmental and multisegmental muscles of the lumbar spine. A biomechanical model comparing lateral stabilizing potential.
    Crisco JJ; Panjabi MM
    Spine (Phila Pa 1976); 1991 Jul; 16(7):793-9. PubMed ID: 1925756
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Trunk muscle contributions of to L4-5 joint rotational stiffness following sudden trunk lateral bend perturbations.
    Cort JA; Dickey JP; Potvin JR
    J Electromyogr Kinesiol; 2013 Dec; 23(6):1334-42. PubMed ID: 24148963
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An enhanced and validated generic thoraco-lumbar spine model for prediction of muscle forces.
    Han KS; Zander T; Taylor WR; Rohlmann A
    Med Eng Phys; 2012 Jul; 34(6):709-16. PubMed ID: 21978915
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Development of a novel MATLAB-based framework for implementing mechanical joint stability constraints within OpenSim musculoskeletal models.
    Akhavanfar MH; Brandon SCE; Brown SHM; Graham RB
    J Biomech; 2019 Jun; 91():61-68. PubMed ID: 31138478
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The mechanism of the lumbar spine.
    Gracovetsky S; Farfan HF; Lamy C
    Spine (Phila Pa 1976); 1981; 6(3):249-62. PubMed ID: 7268545
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Increase of load-carrying capacity under follower load generated by trunk muscles in lumbar spine.
    Kim K; Kim YH; Lee S
    Proc Inst Mech Eng H; 2007 Apr; 221(3):229-35. PubMed ID: 17539579
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A myoelectrically based dynamic three-dimensional model to predict loads on lumbar spine tissues during lateral bending.
    McGill SM
    J Biomech; 1992 Apr; 25(4):395-414. PubMed ID: 1533860
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparison of different rowing exercises: trunk muscle activation and lumbar spine motion, load, and stiffness.
    Fenwick CM; Brown SH; McGill SM
    J Strength Cond Res; 2009 Mar; 23(2):350-8. PubMed ID: 19197209
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An investigation of jogging biomechanics using the full-body lumbar spine model: Model development and validation.
    Raabe ME; Chaudhari AMW
    J Biomech; 2016 May; 49(7):1238-1243. PubMed ID: 26947033
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The influence of slouching and lumbar support on iliolumbar ligaments, intervertebral discs and sacroiliac joints.
    Snijders CJ; Hermans PF; Niesing R; Spoor CW; Stoeckart R
    Clin Biomech (Bristol); 2004 May; 19(4):323-9. PubMed ID: 15109750
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evaluation of trunk muscle coactivation predictions in multi-body models.
    Caimi A; Ferguson SJ; Ignasiak D
    J Biomech; 2024 May; 168():112039. PubMed ID: 38657434
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Effect of Muscle Direction on the Predictions of Finite Element Model of Human Lumbar Spine.
    Zhu R; Niu WX; Wang ZP; Pei XL; He B; Zeng ZL; Cheng LM
    Biomed Res Int; 2018; 2018():4517471. PubMed ID: 29511680
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A biomechanical comparison between expert and novice manual materials handlers using a multi-joint EMG-assisted optimization musculoskeletal model of the lumbar spine.
    Gagnon D; Plamondon A; Larivière C
    J Biomech; 2016 Sep; 49(13):2938-2945. PubMed ID: 27469898
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synergy of the human spine in neutral postures.
    Kiefer A; Shirazi-Adl A; Parnianpour M
    Eur Spine J; 1998; 7(6):471-9. PubMed ID: 9883956
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Lumbar spinal muscle activation synergies predicted by multi-criteria cost function.
    Stokes IA; Gardner-Morse M
    J Biomech; 2001 Jun; 34(6):733-40. PubMed ID: 11470110
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Paraspinal muscle activation in accordance with mechanoreceptors in the intervertebral discs.
    Kim YE; Choi HW
    Proc Inst Mech Eng H; 2013 Feb; 227(2):138-47. PubMed ID: 23513985
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Impact of lumbar spine posture on thoracic spine motion and muscle activation patterns.
    Nairn BC; Drake JD
    Hum Mov Sci; 2014 Oct; 37():1-11. PubMed ID: 25026559
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparison of muscle forces and joint load from an optimization and EMG assisted lumbar spine model: towards development of a hybrid approach.
    Cholewicki J; McGill SM; Norman RW
    J Biomech; 1995 Mar; 28(3):321-31. PubMed ID: 7730390
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Load-sharing in the lumbosacral spine in neutral standing & flexed postures - A combined finite element and inverse static study.
    Liu T; Khalaf K; Naserkhaki S; El-Rich M
    J Biomech; 2018 Mar; 70():43-50. PubMed ID: 29153706
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An improved multi-joint EMG-assisted optimization approach to estimate joint and muscle forces in a musculoskeletal model of the lumbar spine.
    Gagnon D; Arjmand N; Plamondon A; Shirazi-Adl A; Larivière C
    J Biomech; 2011 May; 44(8):1521-9. PubMed ID: 21439569
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.