BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

371 related articles for article (PubMed ID: 7896862)

  • 1. Flexion relaxation during lifting: implications for torque production by muscle activity and tissue strain at the lumbo-sacral joint.
    Toussaint HM; de Winter AF; de Haas Y; de Looze MP; Van Dieën JH; Kingma I
    J Biomech; 1995 Feb; 28(2):199-210. PubMed ID: 7896862
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of on-body lift assistive device on the lumbar 3D dynamic moments and EMG during asymmetric freestyle lifting.
    Abdoli-E M; Stevenson JM
    Clin Biomech (Bristol, Avon); 2008 Mar; 23(3):372-80. PubMed ID: 18093709
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Examination of the flexion relaxation phenomenon in erector spinae muscles during short duration slumped sitting.
    Callaghan JP; Dunk NM
    Clin Biomech (Bristol, Avon); 2002 Jun; 17(5):353-60. PubMed ID: 12084539
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The relationship between flexibility and EMG activity pattern of the erector spinae muscles during trunk flexion-extension.
    Hashemirad F; Talebian S; Hatef B; Kahlaee AH
    J Electromyogr Kinesiol; 2009 Oct; 19(5):746-53. PubMed ID: 18400517
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Response of the flexion-relaxation phenomenon relative to the lumbar motion to load and speed.
    Sarti MA; Lisón JF; Monfort M; Fuster MA
    Spine (Phila Pa 1976); 2001 Sep; 26(18):E421-6. PubMed ID: 11547213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An on-body personal lift augmentation device (PLAD) reduces EMG amplitude of erector spinae during lifting tasks.
    Abdoli-E M; Agnew MJ; Stevenson JM
    Clin Biomech (Bristol, Avon); 2006 Jun; 21(5):456-65. PubMed ID: 16494978
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PLAD (personal lift assistive device) stiffness affects the lumbar flexion/extension moment and the posterior chain EMG during symmetrical lifting tasks.
    Frost DM; Abdoli-E M; Stevenson JM
    J Electromyogr Kinesiol; 2009 Dec; 19(6):e403-12. PubMed ID: 19200755
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The relationship between EMG activity and extensor moment generation in the erector spinae muscles during bending and lifting activities.
    Dolan P; Adams MA
    J Biomech; 1993; 26(4-5):513-22. PubMed ID: 8478353
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Repetitive lifting tasks fatigue the back muscles and increase the bending moment acting on the lumbar spine.
    Dolan P; Adams MA
    J Biomech; 1998 Aug; 31(8):713-21. PubMed ID: 9796671
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effects of repetitive motion on lumbar flexion and erector spinae muscle activity in rowers.
    Caldwell JS; McNair PJ; Williams M
    Clin Biomech (Bristol, Avon); 2003 Oct; 18(8):704-11. PubMed ID: 12957556
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bending and compressive stresses acting on the lumbar spine during lifting activities.
    Dolan P; Earley M; Adams MA
    J Biomech; 1994 Oct; 27(10):1237-48. PubMed ID: 7962011
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Erector spinae activation and movement dynamics about the lumbar spine in lordotic and kyphotic squat-lifting.
    Holmes JA; Damaser MS; Lehman SL
    Spine (Phila Pa 1976); 1992 Mar; 17(3):327-34. PubMed ID: 1566169
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Passive tissues help the back muscles to generate extensor moments during lifting.
    Dolan P; Mannion AF; Adams MA
    J Biomech; 1994 Aug; 27(8):1077-85. PubMed ID: 8089162
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Loads distributed in vivo among vertebrae, muscles, spinal ligaments, and intervertebral discs in a passively flexed lumbar spine.
    Mörl F; Günther M; Riede JM; Hammer M; Schmitt S
    Biomech Model Mechanobiol; 2020 Dec; 19(6):2015-2047. PubMed ID: 32314072
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in the flexion-relaxation response induced by hip extensor and erector spinae muscle fatigue.
    Descarreaux M; Lafond D; Cantin V
    BMC Musculoskelet Disord; 2010 Jun; 11():112. PubMed ID: 20525336
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of pregnancy on lumbar motion patterns and muscle responses.
    Biviá-Roig G; Lisón JF; Sánchez-Zuriaga D
    Spine J; 2019 Feb; 19(2):364-371. PubMed ID: 30144534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decreasing the required lumbar extensor moment induces earlier onset of flexion relaxation.
    Zwambag DP; De Carvalho DE; Brown SH
    J Electromyogr Kinesiol; 2016 Oct; 30():38-45. PubMed ID: 27267174
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Study on diagnosis and treatment of lumbar disc herniation and related factors based on dynamic electromyography].
    Huang P; Lu X; Guo L; Xu X; Shen ZR; Chen B
    Zhongguo Gu Shang; 2022 Oct; 35(10):984-9. PubMed ID: 36280418
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Torque and EMG in rotation extension of the torso from pre-rotated and flexed postures.
    Kumar S; Narayan Y
    Clin Biomech (Bristol, Avon); 2006 Nov; 21(9):920-31. PubMed ID: 16782246
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inter-joint coordination and the flexion-relaxation phenomenon among adults with low back pain during bending.
    Ippersiel P; Preuss R; Fillion A; Jean-Louis J; Woodrow R; Zhang Q; Robbins SM
    Gait Posture; 2021 Mar; 85():164-170. PubMed ID: 33581560
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.