These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 7897401)
21. Role of NMDA receptors and voltage-activated calcium channels in an in vitro model of cerebral ischemia. Kral T; Luhmann HJ; Mittmann T; Heinemann U Brain Res; 1993 May; 612(1-2):278-88. PubMed ID: 8101132 [TBL] [Abstract][Full Text] [Related]
22. Postsynaptic secretion of BDNF and NT-3 from hippocampal neurons depends on calcium calmodulin kinase II signaling and proceeds via delayed fusion pore opening. Kolarow R; Brigadski T; Lessmann V J Neurosci; 2007 Sep; 27(39):10350-64. PubMed ID: 17898207 [TBL] [Abstract][Full Text] [Related]
23. Sodium influx plays a major role in the membrane depolarization induced by oxygen and glucose deprivation in rat striatal spiny neurons. Calabresi P; Marfia GA; Centonze D; Pisani A; Bernardi G Stroke; 1999 Jan; 30(1):171-9. PubMed ID: 9880406 [TBL] [Abstract][Full Text] [Related]
24. Calcium sequestering ability of mitochondria modulates influx of calcium through glutamate receptor channel. Kannurpatti SS; Joshi PG; Joshi NB Neurochem Res; 2000 Dec; 25(12):1527-36. PubMed ID: 11152381 [TBL] [Abstract][Full Text] [Related]
25. The effects of 17beta-estradiol on ischemia-induced neuronal damage in the gerbil hippocampus. Chen J; Adachi N; Liu K; Arai T Neuroscience; 1998 Dec; 87(4):817-22. PubMed ID: 9759969 [TBL] [Abstract][Full Text] [Related]
27. Ibudilast reduces intracellular calcium elevation induced by in vitro ischaemia in gerbil hippocampal slices. Yanase H; Mitani A; Kataoka K Clin Exp Pharmacol Physiol; 1996 Apr; 23(4):317-24. PubMed ID: 8717068 [TBL] [Abstract][Full Text] [Related]
28. Effects of ion channel blockade on the distribution of Na, K, Ca and other elements in oxygen-glucose deprived CA1 hippocampal neurons. LoPachin RM; Gaughan CL; Lehning EJ; Weber ML; Taylor CP Neuroscience; 2001; 103(4):971-83. PubMed ID: 11301205 [TBL] [Abstract][Full Text] [Related]
29. Ginsenoside Rg1 protects neurons from hypoxic-ischemic injury possibly by inhibiting Ca2+ influx through NMDA receptors and L-type voltage-dependent Ca2+ channels. Zhang YF; Fan XJ; Li X; Peng LL; Wang GH; Ke KF; Jiang ZL Eur J Pharmacol; 2008 May; 586(1-3):90-9. PubMed ID: 18430419 [TBL] [Abstract][Full Text] [Related]
30. Isoflurane neuroprotection in rat hippocampal slices decreases with aging: changes in intracellular Ca2+ regulation and N-methyl-D-aspartate receptor-mediated Ca2+ influx. Zhan X; Fahlman CS; Bickler PE Anesthesiology; 2006 May; 104(5):995-1003. PubMed ID: 16645452 [TBL] [Abstract][Full Text] [Related]
31. Dendritic Ca2+ accumulations and metabotropic glutamate receptor activation associated with an N-methyl-D-aspartate receptor-independent long-term potentiation in hippocampal CA1 neurons. Petrozzino JJ; Connor JA Hippocampus; 1994 Oct; 4(5):546-58. PubMed ID: 7889125 [TBL] [Abstract][Full Text] [Related]
32. Cyclic changes in NMDA receptor activation in hippocampal CA1 neurons after ischemia. Oguro K; Miyawaki T; Cho H; Yokota H; Masuzawa T; Tsubokawa H; Kawai N Neurosci Res; 1997 Dec; 29(4):273-81. PubMed ID: 9527618 [TBL] [Abstract][Full Text] [Related]
33. Abnormal Ca2+ homeostasis before cell death revealed by whole cell recording of ischemic CA1 hippocampal neurons. Tsubokawa H; Oguro K; Robinson HP; Masuzawa T; Kirino T; Kawai N Neuroscience; 1992 Aug; 49(4):807-17. PubMed ID: 1436482 [TBL] [Abstract][Full Text] [Related]
34. N-methyl-D-aspartate receptor activation increases cAMP levels and voltage-gated Ca2+ channel activity in area CA1 of hippocampus. Chetkovich DM; Gray R; Johnston D; Sweatt JD Proc Natl Acad Sci U S A; 1991 Aug; 88(15):6467-71. PubMed ID: 1677768 [TBL] [Abstract][Full Text] [Related]
35. Excitatory amino acid-mediated cytotoxicity and calcium homeostasis in cultured neurons. Frandsen A; Schousboe A J Neurochem; 1993 Apr; 60(4):1202-11. PubMed ID: 8455022 [TBL] [Abstract][Full Text] [Related]
36. Insights into associative long-term potentiation from computational models of NMDA receptor-mediated calcium influx and intracellular calcium concentration changes. Holmes WR; Levy WB J Neurophysiol; 1990 May; 63(5):1148-68. PubMed ID: 2162921 [TBL] [Abstract][Full Text] [Related]
37. Blockade by ifenprodil of high voltage-activated Ca2+ channels in rat and mouse cultured hippocampal pyramidal neurones: comparison with N-methyl-D-aspartate receptor antagonist actions. Church J; Fletcher EJ; Baxter K; MacDonald JF Br J Pharmacol; 1994 Oct; 113(2):499-507. PubMed ID: 7834201 [TBL] [Abstract][Full Text] [Related]
38. Intracellular calcium elevation during plateau potentials mediated by extrasynaptic NMDA receptor activation in rat hippocampal CA1 pyramidal neurons is primarily due to calcium entry through voltage-gated calcium channels. Oda Y; Kodama S; Tsuchiya S; Inoue M; Miyakawa H Eur J Neurosci; 2014 May; 39(10):1613-23. PubMed ID: 24674276 [TBL] [Abstract][Full Text] [Related]
39. [3H]muscimol binding to gamma-aminobutyric acid(A) receptors is upregulated in CA1 neurons of the gerbil hippocampus in the ischemia-tolerant state. Sommer C; Fahrner A; Kiessling M Stroke; 2002 Jun; 33(6):1698-705. PubMed ID: 12053014 [TBL] [Abstract][Full Text] [Related]
40. Functional NMDA receptor subtype 2B is expressed in astrocytes after ischemia in vivo and anoxia in vitro. Krebs C; Fernandes HB; Sheldon C; Raymond LA; Baimbridge KG J Neurosci; 2003 Apr; 23(8):3364-72. PubMed ID: 12716944 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]